Teo Han Meng, A Aziz, A Wahizatul A, Bhubalan Kesaven, S Siti Nordahliawate M, C I Muhamad Syazlie, Ng Lee Chuen
Laboratory of Pest, Disease and Microbial Biotechnology (LAPDiM), Faculty of Fisheries and Food Science (FFFS), Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia.
Biological Security and Sustainability Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia.
Microorganisms. 2022 Mar 19;10(3):657. doi: 10.3390/microorganisms10030657.
The global scale of land salinization has always been a considerable concern for human livelihoods, mainly regarding the food-producing agricultural industries. The latest update suggested that the perpetual salinity problem claimed up to 900 million hectares of agricultural land worldwide, inducing salinity stress among salt-sensitive crops and ultimately reducing productivity and yield. Moreover, with the constant growth of the human population, sustainable solutions are vital to ensure food security and social welfare. Despite that, the current method of crop augmentations via selective breeding and genetic engineering only resulted in mild success. Therefore, using the biological approach of halotolerant plant growth-promoting bacteria (HT-PGPB) as bio-inoculants provides a promising crop enhancement strategy. HT-PGPB has been proven capable of forming a symbiotic relationship with the host plant by instilling induced salinity tolerance (IST) and multiple plant growth-promoting traits (PGP). Nevertheless, the mechanisms and prospects of HT-PGPB application of glycophytic rice crops remains incomprehensively reported. Thus, this review describes a plausible strategy of halophyte-associated HT-PGPB as the future catalyst for rice crop production in salt-dominated land and aims to meet the global Sustainable Development Goals (SDGs) of zero hunger.
全球土地盐碱化规模一直是关乎人类生计的重大问题,主要涉及粮食生产农业产业。最新数据显示,持续存在的盐碱化问题致使全球多达9亿公顷的农业用地受到影响,导致对盐分敏感的作物遭受盐胁迫,最终降低了生产力和产量。此外,随着人口的不断增长,可持续解决方案对于确保粮食安全和社会福祉至关重要。尽管如此,目前通过选择性育种和基因工程增加作物产量的方法仅取得了有限的成功。因此,利用耐盐促植物生长细菌(HT-PGPB)的生物学方法作为生物接种剂,为作物增产提供了一种有前景的策略。HT-PGPB已被证明能够通过赋予诱导耐盐性(IST)和多种植物促生长特性(PGP)与宿主植物形成共生关系。然而,关于HT-PGPB在甜土水稻作物上应用的机制和前景仍缺乏全面报道。因此,本综述描述了一种将盐生植物相关的HT-PGPB作为未来盐碱地水稻作物生产催化剂的可行策略,旨在实现全球零饥饿的可持续发展目标(SDGs)。