Stanford Prevention Research Center, Department of Medicine and Department of Epidemiology and Population Health, and Meta-Research Innovation Center at Stanford (METRICS), Stanford University, Stanford, California, USA
BMJ Evid Based Med. 2022 Dec;27(6):324-329. doi: 10.1136/bmjebm-2021-111901. Epub 2022 Mar 25.
Non-randomised studies assessing COVID-19 vaccine effectiveness need to consider multiple factors that may generate spurious estimates due to bias or genuinely modify effectiveness. These include pre-existing immunity, vaccination misclassification, exposure differences, testing, disease risk factor confounding, hospital admission decision, treatment use differences, and death attribution. It is useful to separate whether the impact of each factor admission decision, treatment use differences, and death attribution. Steps and measures to consider for improving vaccine effectiveness estimation include registration of studies and of analysis plans; sharing of raw data and code; background collection of reliable information; blinded assessment of outcomes, e.g. death causes; using maximal/best information in properly-matched studies, multivariable analyses, propensity analyses, and other models; performing randomised trials, whenever possible, for suitable questions, e.g. booster doses or comparative effectiveness of different vaccination strategies; living meta-analyses of vaccine effectiveness; better communication with both relative and absolute metrics of risk reduction and presentation of uncertainty; and avoidance of exaggeration in communicating results to the general public.
评估 COVID-19 疫苗有效性的非随机研究需要考虑多种可能因偏倚或真实改变有效性而产生虚假估计的因素。这些因素包括预先存在的免疫、疫苗分类错误、暴露差异、检测、疾病风险因素混杂、住院决策、治疗使用差异和死亡归因。区分每个因素(住院决策、治疗使用差异和死亡归因)的影响是有用的。提高疫苗有效性估计的步骤和措施包括:研究和分析计划的注册;原始数据和代码的共享;可靠信息的背景收集;结局的盲法评估,例如死因;在适当匹配的研究中使用最大/最佳信息、多变量分析、倾向分析和其他模型;在可能的情况下,为合适的问题进行随机试验,例如加强剂量或不同疫苗接种策略的比较效果;疫苗有效性的实时荟萃分析;更好地用风险降低的相对和绝对指标进行沟通,并展示不确定性;避免向公众夸大结果。