Suppr超能文献

基于计算流体动力学的疫情模型及大流行情景。

The computational fluid dynamics-based epidemic model and the pandemic scenarios.

作者信息

Dbouk Talib, Drikakis Dimitris

机构信息

IMT Nord Europe, Institut Mines-Télécom, University of Lille, F-59000 Lille, France.

University of Nicosia, Nicosia CY-2417, Cyprus.

出版信息

Phys Fluids (1994). 2022 Feb;34(2):027104. doi: 10.1063/5.0082090. Epub 2022 Feb 2.

Abstract

This study presents a computational fluid dynamics, susceptible-infected-recovered-based epidemic model that relates weather conditions to airborne virus transmission dynamics. The model considers the relationship between weather seasonality, airborne virus transmission, and pandemic outbreaks. We examine multiple scenarios of the COVID-19 fifth wave in London, United Kingdom, showing the potential peak and the period occurring. The study also shows the importance of fluid dynamics and computational modeling in developing more advanced epidemiological models in the future.

摘要

本研究提出了一种基于计算流体动力学、易感-感染-康复的流行病模型,该模型将天气状况与空气传播病毒的传播动态联系起来。该模型考虑了季节变化、空气传播病毒传播和大流行爆发之间的关系。我们研究了英国伦敦新冠疫情第五波的多种情况,展示了可能出现的峰值和时期。该研究还表明了流体动力学和计算建模在未来开发更先进的流行病学模型中的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a4f2/8939527/f67e52281e40/PHFLE6-000034-027104_1-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验