Suppr超能文献

DCAU-Net:用于颅内动脉瘤图像分割的密集卷积注意力U型网络

DCAU-Net: dense convolutional attention U-Net for segmentation of intracranial aneurysm images.

作者信息

Yuan Wenwen, Peng Yanjun, Guo Yanfei, Ren Yande, Xue Qianwen

机构信息

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao, 266590, China.

The Department of Radiology, the Affiliated Hospital of Qingdao University, Qingdao, 266000, China.

出版信息

Vis Comput Ind Biomed Art. 2022 Mar 28;5(1):9. doi: 10.1186/s42492-022-00105-4.

Abstract

Segmentation of intracranial aneurysm images acquired using magnetic resonance angiography (MRA) is essential for medical auxiliary treatments, which can effectively prevent subarachnoid hemorrhages. This paper proposes an image segmentation model based on a dense convolutional attention U-Net, which fuses deep and rich semantic information with shallow-detail information for adaptive and accurate segmentation of MRA-acquired aneurysm images with large size differences. The U-Net model serves as a backbone, combining dense block and convolution block attention module (CBAM). The dense block is composed of a batch normalization layer, an randomly rectified linear unit activation function, and a convolutional layer, for mitigation of vanishing gradients, for multiplexing of aneurysm features, and for improving the network training efficiency. The CBAM is composed of a channel attention module and a spatial attention module, improving the segmentation performance of feature discrimination and enhancing the acquisition of key feature information. Owing to the large variation of aneurysm sizes, multi-scale fusion is performed during up-sampling, for adaptive segmentation of MRA-acquired aneurysm images. The model was tested on the MICCAI 2020 ADAM dataset, and its generalizability was validated on the clinical aneurysm dataset (aneurysm sizes: < 3 mm, 3-7 mm, and > 7 mm) supplied by the Affiliated Hospital of Qingdao University. A good clinical application segmentation performance was demonstrated.

摘要

使用磁共振血管造影(MRA)获取的颅内动脉瘤图像分割对于医学辅助治疗至关重要,它可以有效预防蛛网膜下腔出血。本文提出了一种基于密集卷积注意力U-Net的图像分割模型,该模型将深层丰富的语义信息与浅层细节信息相融合,以对尺寸差异较大的MRA获取的动脉瘤图像进行自适应且准确的分割。U-Net模型作为主干,结合了密集块和卷积块注意力模块(CBAM)。密集块由批归一化层、随机整流线性单元激活函数和卷积层组成,用于缓解梯度消失问题、复用动脉瘤特征并提高网络训练效率。CBAM由通道注意力模块和空间注意力模块组成,可提高特征辨别能力的分割性能并增强关键特征信息的获取。由于动脉瘤大小变化较大,在上采样过程中进行多尺度融合,以对MRA获取的动脉瘤图像进行自适应分割。该模型在MICCAI 2020 ADAM数据集上进行了测试,并在青岛大学附属医院提供的临床动脉瘤数据集(动脉瘤大小:<3毫米、3 - 7毫米和>7毫米)上验证了其通用性。结果表明该模型具有良好的临床应用分割性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4fff/8960533/25583562c271/42492_2022_105_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验