Suppr超能文献

有丝分裂欺骗的自私着丝粒的分子策略。

Molecular Strategies of Meiotic Cheating by Selfish Centromeres.

机构信息

Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.

Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.

出版信息

Cell. 2019 Aug 22;178(5):1132-1144.e10. doi: 10.1016/j.cell.2019.07.001. Epub 2019 Aug 8.

Abstract

Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.

摘要

在雌性减数分裂中,不对称分裂产生了有利于自私中心体的选择压力,使它们偏向于传递给卵子。这种着丝粒驱动可以解释尽管着丝粒功能保守,但着丝粒 DNA 和着丝粒结合蛋白的快速进化悖论。在这里,我们定义了一个分子途径,将扩展的着丝粒与组蛋白磷酸化和微管不稳定因子的募集联系起来,导致自私着丝粒从纺锤体微管上脱离,这些微管本来会将它们引导到极体。利用物种之间的着丝粒分歧,我们表明,两种杂交小鼠模型中的自私着丝粒使用相同的分子途径,但以不同的方式调节它,以富集不稳定因子。我们的结果表明,增加微管不稳定活性是两种模型中驱动的一般策略,但着丝粒已经进化出不同的机制来增加这种活性。此外,我们表明,驱动取决于减缓减数分裂进程,这表明通过调节减数分裂时间可以抑制自私着丝粒。

相似文献

1
Molecular Strategies of Meiotic Cheating by Selfish Centromeres.
Cell. 2019 Aug 22;178(5):1132-1144.e10. doi: 10.1016/j.cell.2019.07.001. Epub 2019 Aug 8.
2
Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements.
Semin Cell Dev Biol. 2022 Aug;128:51-60. doi: 10.1016/j.semcdb.2022.03.026. Epub 2022 Mar 26.
3
Sister centromere fusion during meiosis I depends on maintaining cohesins and destabilizing microtubule attachments.
PLoS Genet. 2019 May 31;15(5):e1008072. doi: 10.1371/journal.pgen.1008072. eCollection 2019 May.
4
Cell Biology of Cheating-Transmission of Centromeres and Other Selfish Elements Through Asymmetric Meiosis.
Prog Mol Subcell Biol. 2017;56:377-396. doi: 10.1007/978-3-319-58592-5_16.
5
Asymmetric Tyrosination of Spindle Microtubules Facilitates Selfish Inheritance.
Trends Cell Biol. 2018 Jun;28(6):417-419. doi: 10.1016/j.tcb.2018.03.005. Epub 2018 Apr 10.
6
Parallel pathways for recruiting effector proteins determine centromere drive and suppression.
Cell. 2021 Sep 16;184(19):4904-4918.e11. doi: 10.1016/j.cell.2021.07.037. Epub 2021 Aug 24.
7
Expanded Satellite Repeats Amplify a Discrete CENP-A Nucleosome Assembly Site on Chromosomes that Drive in Female Meiosis.
Curr Biol. 2017 Aug 7;27(15):2365-2373.e8. doi: 10.1016/j.cub.2017.06.069. Epub 2017 Jul 27.
8
Female meiotic drive in plants: mechanisms and dynamics.
Curr Opin Genet Dev. 2023 Oct;82:102101. doi: 10.1016/j.gde.2023.102101. Epub 2023 Aug 24.
9
Spindle tubulin and MTOC asymmetries may explain meiotic drive in oocytes.
Nat Commun. 2018 Jul 27;9(1):2952. doi: 10.1038/s41467-018-05338-7.
10
Centromere drive: model systems and experimental progress.
Chromosome Res. 2022 Sep;30(2-3):187-203. doi: 10.1007/s10577-022-09696-3. Epub 2022 Jun 22.

引用本文的文献

1
Centromeres drive and take a break.
Chromosome Res. 2025 Aug 4;33(1):17. doi: 10.1007/s10577-025-09777-z.
2
Genetic and environmental influences on the distributions of three chromosomal drive haplotypes in maize.
PLoS Genet. 2025 Jul 16;21(7):e1011742. doi: 10.1371/journal.pgen.1011742. eCollection 2025 Jul.
4
Genetic and environmental influences on the distributions of three chromosomal drive haplotypes in maize.
bioRxiv. 2025 May 27:2025.05.22.655462. doi: 10.1101/2025.05.22.655462.
5
Common variation in meiosis genes shapes human recombination phenotypes and aneuploidy risk.
medRxiv. 2025 Apr 4:2025.04.02.25325097. doi: 10.1101/2025.04.02.25325097.
6
Marking dad's centromeres: maintaining CENP-A in sperm.
Chromosome Res. 2025 Apr 26;33(1):8. doi: 10.1007/s10577-025-09766-2.
7
Meiosis-specific distal cohesion site decoupled from the kinetochore.
Nat Commun. 2025 Mar 3;16(1):2116. doi: 10.1038/s41467-025-57438-w.
8
Adaptive evolution of CENP-T modulates centromere binding.
Curr Biol. 2025 Mar 10;35(5):1012-1022.e5. doi: 10.1016/j.cub.2025.01.017. Epub 2025 Feb 12.
9
Satellite DNA shapes dictate pericentromere packaging in female meiosis.
Nature. 2025 Feb;638(8051):814-822. doi: 10.1038/s41586-024-08374-0. Epub 2025 Jan 8.
10
Species-specific satellite DNA composition dictates PRC1-mediated pericentric heterochromatin.
bioRxiv. 2025 Mar 25:2024.10.11.617947. doi: 10.1101/2024.10.11.617947.

本文引用的文献

1
Recurrent Losses and Rapid Evolution of the Condensin II Complex in Insects.
Mol Biol Evol. 2019 Oct 1;36(10):2195-2204. doi: 10.1093/molbev/msz140.
2
Kinetochore Proteins Have a Post-Mitotic Function in Neurodevelopment.
Dev Cell. 2019 Mar 25;48(6):873-882.e4. doi: 10.1016/j.devcel.2019.02.003. Epub 2019 Feb 28.
3
The Kinetochore-Microtubule Coupling Machinery Is Repurposed in Sensory Nervous System Morphogenesis.
Dev Cell. 2019 Mar 25;48(6):864-872.e7. doi: 10.1016/j.devcel.2019.02.002. Epub 2019 Feb 28.
4
Inhibition of BUB1 Kinase by BAY 1816032 Sensitizes Tumor Cells toward Taxanes, ATR, and PARP Inhibitors and .
Clin Cancer Res. 2019 Feb 15;25(4):1404-1414. doi: 10.1158/1078-0432.CCR-18-0628. Epub 2018 Nov 14.
5
Spindle tubulin and MTOC asymmetries may explain meiotic drive in oocytes.
Nat Commun. 2018 Jul 27;9(1):2952. doi: 10.1038/s41467-018-05338-7.
6
Cellular and Molecular Mechanisms of Centromere Drive.
Cold Spring Harb Symp Quant Biol. 2017;82:249-257. doi: 10.1101/sqb.2017.82.034298. Epub 2018 Feb 12.
7
Mechanisms of kinetochore-microtubule attachment errors in mammalian oocytes.
Dev Growth Differ. 2018 Jan;60(1):33-43. doi: 10.1111/dgd.12410. Epub 2018 Jan 10.
8
Spindle asymmetry drives non-Mendelian chromosome segregation.
Science. 2017 Nov 3;358(6363):668-672. doi: 10.1126/science.aan0092.
9
Chromosome biorientation and APC activity remain uncoupled in oocytes with reduced volume.
J Cell Biol. 2017 Dec 4;216(12):3949-3957. doi: 10.1083/jcb.201606134. Epub 2017 Oct 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验