Bao Feng, Deng Yue, Wan Sen, Shen Susan Q, Wang Bo, Dai Qionghai, Altschuler Steven J, Wu Lani F
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
School of Astronautics, Beihang University, Beijing, China.
Nat Biotechnol. 2022 Aug;40(8):1200-1209. doi: 10.1038/s41587-022-01251-z. Epub 2022 Mar 28.
Spatial transcriptomics enables the simultaneous measurement of morphological features and transcriptional profiles of the same cells or regions in tissues. Here we present multi-modal structured embedding (MUSE), an approach to characterize cells and tissue regions by integrating morphological and spatially resolved transcriptional data. We demonstrate that MUSE can discover tissue subpopulations missed by either modality as well as compensate for modality-specific noise. We apply MUSE to diverse datasets containing spatial transcriptomics (seqFISH+, STARmap or Visium) and imaging (hematoxylin and eosin or fluorescence microscopy) modalities. MUSE identified biologically meaningful tissue subpopulations and stereotyped spatial patterning in healthy brain cortex and intestinal tissues. In diseased tissues, MUSE revealed gene biomarkers for proximity to tumor region and heterogeneity of amyloid precursor protein processing across Alzheimer brain regions. MUSE enables the integration of multi-modal data to provide insights into the states, functions and organization of cells in complex biological tissues.
空间转录组学能够同时测量组织中相同细胞或区域的形态特征和转录谱。在此,我们介绍多模态结构化嵌入(MUSE),这是一种通过整合形态学和空间分辨转录数据来表征细胞和组织区域的方法。我们证明,MUSE可以发现单一模态遗漏的组织亚群,并补偿模态特异性噪声。我们将MUSE应用于包含空间转录组学(seqFISH+、STARmap或Visium)和成像(苏木精和伊红或荧光显微镜)模态的各种数据集。MUSE在健康的脑皮质和肠道组织中识别出具有生物学意义的组织亚群和定型的空间模式。在患病组织中,MUSE揭示了靠近肿瘤区域的基因生物标志物以及阿尔茨海默病脑区淀粉样前体蛋白加工的异质性。MUSE能够整合多模态数据,从而深入了解复杂生物组织中细胞的状态、功能和组织情况。