Division of Epidemiology and Community Health, University of Minnesota, School of Public Health, Minneapolis, MN.
Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, MN.
J Nutr. 2022 May 5;152(5):1187-1199. doi: 10.1093/jn/nxac033.
The human gut microbiome is linked to metabolic and cardiovascular disease risk. Dietary modulation of the human gut microbiome offers an attractive pathway to manipulate the microbiome to prevent microbiome-related disease. However, this promise has not been realized. The complex system of diet and microbiome interactions is poorly understood. Integrating observational human diet and microbiome data can help researchers and clinicians untangle the complex systems of interactions that predict how the microbiome will change in response to foods. The use of dietary patterns to assess diet-microbiome relations holds promise to identify interesting associations and result in findings that can directly translate into actionable dietary intake recommendations and eating plans. In this article, we first highlight the complexity inherent in both dietary and microbiome data and introduce the approaches generally used to explore diet and microbiome simultaneously in observational studies. Second, we review the food group and dietary pattern-microbiome literature focusing on dietary complexity-moving beyond nutrients. Our review identified a substantial and growing body of literature that explores links between the microbiome and dietary patterns. However, there was very little standardization of dietary collection and assessment methods across studies. The 54 studies identified in this review used ≥7 different methods to assess diet. Coupled with the variation in final dietary parameters calculated from dietary data (e.g., dietary indices, dietary patterns, food groups, etc.), few studies with shared methods and assessment techniques were available for comparison. Third, we highlight the similarities between dietary and microbiome data structures and present the possibility that multivariate and compositional methods, developed initially for microbiome data, could have utility when applied to dietary data. Finally, we summarize the current state of the art for diet-microbiome data integration and highlight ways dietary data could be paired with microbiome data in future studies to improve the detection of diet-microbiome signals.
人类肠道微生物群与代谢和心血管疾病风险有关。通过饮食来调节人类肠道微生物群为操纵微生物群以预防与微生物群相关的疾病提供了一个有吸引力的途径。然而,这一承诺尚未实现。饮食与微生物群相互作用的复杂系统还没有被很好地理解。整合观察性的人类饮食和微生物组数据可以帮助研究人员和临床医生理清预测微生物组如何响应食物而发生变化的复杂相互作用系统。使用饮食模式来评估饮食-微生物组关系有望识别有趣的关联,并得出可以直接转化为可操作的饮食摄入建议和饮食计划的发现。在本文中,我们首先强调了饮食和微生物组数据中固有的复杂性,并介绍了通常用于在观察性研究中同时探索饮食和微生物组的方法。其次,我们回顾了食物组和饮食模式-微生物组文献,重点关注饮食复杂性-超越营养素。我们的综述发现了大量的文献,这些文献探索了微生物组与饮食模式之间的联系。然而,在研究之间,饮食收集和评估方法的标准化程度非常低。本综述确定的 54 项研究使用了≥7 种不同的方法来评估饮食。再加上从饮食数据中计算出的最终饮食参数(例如,饮食指数、饮食模式、食物组等)存在差异,几乎没有具有共享方法和评估技术的研究可供比较。第三,我们强调了饮食和微生物组数据结构之间的相似性,并提出了最初为微生物组数据开发的多元和组成方法在应用于饮食数据时可能具有实用性。最后,我们总结了饮食-微生物组数据整合的现状,并强调了在未来的研究中如何将饮食数据与微生物组数据配对,以提高对饮食-微生物组信号的检测。