Department of Chemistry, Emory University, Atlanta, GA, USA.
Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
Bioorg Med Chem Lett. 2022 Jun 1;65:128702. doi: 10.1016/j.bmcl.2022.128702. Epub 2022 Mar 26.
Resistant and tolerant bacterial infections lead to billions in healthcare costs and cause hundreds of thousands of deaths each year. The bulk of current antibiotic research efforts focus on molecules which, although novel, are not immune from acquired resistance and seldomly affect tolerant populations. The bacterial SOS response has been implicated in several resistance and tolerance mechanisms, making it an attractive antibiotic target. Using small molecule inhibitors targeting a key step in the deployment of the SOS response, our approach focused on preventing the deployment of mechanisms such as biofilm formation, horizontal gene transfer, and error-prone DNA repair. Herein we report the synthesis and testing of analogs of a triazole-containing tricyclic inhibitor of LexA proteolysis, the key event in the SOS response. Our results hint that our inhibitor's may function by adopting a β-hairpin conformation, reminiscent of the native cleavage loop of LexA.
耐药和耐受的细菌感染导致数十亿美元的医疗保健费用,并导致每年数十万人死亡。目前大部分抗生素研究工作都集中在分子上,尽管这些分子是新颖的,但它们并不能避免获得性耐药,而且很少能影响耐受人群。细菌 SOS 反应与几种耐药和耐受机制有关,因此成为有吸引力的抗生素靶标。我们的方法使用针对 SOS 反应部署关键步骤的小分子抑制剂,旨在防止生物膜形成、水平基因转移和易错 DNA 修复等机制的部署。在此,我们报告了含有三唑的三环抑制剂 LexA 蛋白水解的类似物的合成和测试,LexA 蛋白水解是 SOS 反应中的关键事件。我们的结果表明,我们的抑制剂可能通过采用β发夹构象来发挥作用,类似于 LexA 的天然切割环。