Suppr超能文献

探索细菌 LexA 阻遏物-蛋白酶抑制剂。

Exploration of inhibitors of the bacterial LexA repressor-protease.

机构信息

Department of Chemistry, Emory University, Atlanta, GA, USA.

Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Bioorg Med Chem Lett. 2022 Jun 1;65:128702. doi: 10.1016/j.bmcl.2022.128702. Epub 2022 Mar 26.

Abstract

Resistant and tolerant bacterial infections lead to billions in healthcare costs and cause hundreds of thousands of deaths each year. The bulk of current antibiotic research efforts focus on molecules which, although novel, are not immune from acquired resistance and seldomly affect tolerant populations. The bacterial SOS response has been implicated in several resistance and tolerance mechanisms, making it an attractive antibiotic target. Using small molecule inhibitors targeting a key step in the deployment of the SOS response, our approach focused on preventing the deployment of mechanisms such as biofilm formation, horizontal gene transfer, and error-prone DNA repair. Herein we report the synthesis and testing of analogs of a triazole-containing tricyclic inhibitor of LexA proteolysis, the key event in the SOS response. Our results hint that our inhibitor's may function by adopting a β-hairpin conformation, reminiscent of the native cleavage loop of LexA.

摘要

耐药和耐受的细菌感染导致数十亿美元的医疗保健费用,并导致每年数十万人死亡。目前大部分抗生素研究工作都集中在分子上,尽管这些分子是新颖的,但它们并不能避免获得性耐药,而且很少能影响耐受人群。细菌 SOS 反应与几种耐药和耐受机制有关,因此成为有吸引力的抗生素靶标。我们的方法使用针对 SOS 反应部署关键步骤的小分子抑制剂,旨在防止生物膜形成、水平基因转移和易错 DNA 修复等机制的部署。在此,我们报告了含有三唑的三环抑制剂 LexA 蛋白水解的类似物的合成和测试,LexA 蛋白水解是 SOS 反应中的关键事件。我们的结果表明,我们的抑制剂可能通过采用β发夹构象来发挥作用,类似于 LexA 的天然切割环。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bc/9071788/bec1964456e8/nihms-1796435-f0002.jpg

相似文献

1
Exploration of inhibitors of the bacterial LexA repressor-protease.探索细菌 LexA 阻遏物-蛋白酶抑制剂。
Bioorg Med Chem Lett. 2022 Jun 1;65:128702. doi: 10.1016/j.bmcl.2022.128702. Epub 2022 Mar 26.
10
Integration of molecular modelling and studies to inhibit LexA proteolysis.整合分子建模与研究以抑制 LexA 蛋白水解。
Front Cell Infect Microbiol. 2023 Mar 3;13:1051602. doi: 10.3389/fcimb.2023.1051602. eCollection 2023.

引用本文的文献

1
SOS response: Activation, impact, and drug targets.SOS 反应:激活、影响及药物靶点。
mLife. 2024 Sep 30;3(3):343-366. doi: 10.1002/mlf2.12137. eCollection 2024 Sep.
2
Integration of molecular modelling and studies to inhibit LexA proteolysis.整合分子建模与研究以抑制 LexA 蛋白水解。
Front Cell Infect Microbiol. 2023 Mar 3;13:1051602. doi: 10.3389/fcimb.2023.1051602. eCollection 2023.
3
Locking down SOS Mutagenesis Repression in a Dynamic Pathogen.锁定动态病原体中的 SOS 诱变抑制。
J Bacteriol. 2022 Nov 15;204(11):e0022022. doi: 10.1128/jb.00220-22. Epub 2022 Oct 4.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验