Gong Peng, Tang Can, Wang Boran, Xiao Taishi, Zhu Hao, Li Qiaowei, Sun Zhengzong
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.
School of Microelectronics, Fudan University, Shanghai 200433, P. R. China.
ACS Cent Sci. 2022 Mar 23;8(3):394-401. doi: 10.1021/acscentsci.1c01578. Epub 2022 Mar 4.
It is of great significance to explore unique and diverse chemical pathways to convert CO into high-value-added products. Bilayer graphene (BLG), with a tunable twist angle and band structure, holds tremendous promise in both fundamental physics and next-generation high-performance devices. However, the π-conjugation and precise two-atom thickness are hindering the selective pathway, through an uncontrolled CO reduction and perplexing growth mechanism. Here, we developed a chemical vapor deposition method to catalytically convert CO into a high-quality BLG single crystal with a room temperature mobility of 2346 cm V s. In a finely controlled growth window, the CO molecule works as both the carbon source and the oxygen etchant, helping to precisely define the BLG nucleus and set a record growth rate of 300 μm h.
探索独特且多样的化学途径将一氧化碳转化为高附加值产品具有重要意义。具有可调扭转角和能带结构的双层石墨烯(BLG)在基础物理学和下一代高性能器件方面都有着巨大潜力。然而,π共轭和精确的双原子厚度通过不受控制的一氧化碳还原和复杂的生长机制阻碍了选择性途径。在此,我们开发了一种化学气相沉积方法,以催化方式将一氧化碳转化为室温迁移率为2346 cm V s的高质量BLG单晶。在精细控制的生长窗口中,一氧化碳分子既作为碳源又作为氧蚀刻剂,有助于精确确定BLG晶核并创下300 μm/h的生长速率记录。