Suppr超能文献

c-di-GMP 信号网络的破坏在生物膜生长过程中解锁了次级代谢产物的隐藏表达。

Disruption of c-di-GMP Signaling Networks Unlocks Cryptic Expression of Secondary Metabolites during Biofilm Growth in .

机构信息

Department of Microbiology, Immunology, and Pathology, Colorado State Universitygrid.47894.36, Fort Collins, Colorado, USA.

出版信息

Appl Environ Microbiol. 2022 Apr 26;88(8):e0243121. doi: 10.1128/aem.02431-21. Epub 2022 Mar 31.

Abstract

The regulation and production of secondary metabolites during biofilm growth of spp. is not well understood. To learn more about the crucial role and regulatory control of cryptic molecules produced during biofilm growth, we disrupted c-di-GMP signaling in Burkholderia pseudomallei, a soilborne bacterial saprophyte and the etiologic agent of melioidosis. Our approach to these studies combined transcriptional profiling with genetic deletions that targeted key c-di-GMP regulatory components to characterize responses to changes in temperature. Mutational analyses and conditional expression studies of c-di-GMP genes demonstrates their contribution to phenotypes such as biofilm formation, colony morphology, motility, and expression of secondary metabolite biosynthesis when grown as a biofilm at different temperatures. RNA-seq analysis was performed at various temperatures in a ΔII2523 mutant background that is responsive to temperature alterations resulting in hypobiofilm- and hyperbiofilm-forming phenotypes. Differential regulation of genes was observed for polysaccharide biosynthesis, secretion systems, and nonribosomal peptide and polyketide synthase (NRPS/PKS) clusters in response to temperature changes. Deletion mutations of biosynthetic gene clusters (BGCs) 2, 11, 14 (syrbactin), and 15 (malleipeptin) in parental and ΔII2523 backgrounds also reveal the contribution of these BGCs to biofilm formation and colony morphology in addition to inhibition of Bacillus subtilis and Rhizoctonia solani. Our findings suggest that II2523 impacts the regulation of genes that contribute to biofilm formation and competition. Characterization of cryptic BGCs under different environmental conditions will allow for a better understanding of the role of secondary metabolites in the context of biofilm formation and microbe-microbe interactions. Burkholderia pseudomallei is a saprophytic bacterium residing in the environment that switches to a pathogenic lifestyle during infection of a wide range of hosts. The environmental cues that serve as the stimulus to trigger this change are largely unknown. However, it is well established that the cellular level of c-di-GMP, a secondary signal messenger, controls the switch from growth as planktonic cells to growth as a biofilm. Disrupting the signaling mediated by c-di-GMP allows for a better understanding of the regulation and the contribution of the surface associated and secreted molecules that contribute to the various lifestyles of this organism. The genome of B. pseudomallei also encodes cryptic biosynthetic gene clusters predicted to encode small molecules that potentially contribute to growth as a biofilm, adaptation, and interactions with other organisms. A better understanding of the regulation of these molecules is crucial to understanding how this versatile pathogen alters its lifestyle.

摘要

spp. 生物膜生长过程中次生代谢物的调节和产生还不太清楚。为了更多地了解生物膜生长过程中产生的隐匿分子的关键作用和调控控制,我们破坏了伯克霍尔德氏菌中的 c-di-GMP 信号,伯克霍尔德氏菌是一种土壤腐生菌,也是类鼻疽的病原体。我们的研究方法将转录谱分析与基因缺失相结合,针对关键的 c-di-GMP 调节成分进行基因敲除,以研究温度变化对其的响应。对 c-di-GMP 基因进行突变分析和条件表达研究表明,当在不同温度下作为生物膜生长时,这些基因对生物膜形成、菌落形态、运动性和次生代谢物生物合成的表达等表型有贡献。在对温度变化敏感的 ΔII2523 突变体背景下,在不同温度下进行 RNA-seq 分析,导致低生物膜形成和高生物膜形成表型。观察到基因的差异调控,包括多糖生物合成、分泌系统和非核糖体肽和聚酮合酶(NRPS/PKS)簇,以响应温度变化。在亲本和 ΔII2523 背景下,生物合成基因簇(BGCs)2、11、14(syrbactin)和 15(malleipeptin)的缺失突变也表明这些 BGCs除了抑制枯草芽孢杆菌和立枯丝核菌外,还对生物膜形成和菌落形态有贡献。我们的发现表明,II2523 影响参与生物膜形成和竞争的基因的调节。在不同环境条件下对隐匿 BGCs 进行表征,将有助于更好地理解次生代谢物在生物膜形成和微生物-微生物相互作用中的作用。 伯克霍尔德氏菌是一种腐生菌,存在于环境中,在感染广泛宿主时转变为致病性生活方式。作为触发这种变化的刺激的环境线索在很大程度上是未知的。然而,众所周知,细胞水平的 c-di-GMP,一种二次信号信使,控制着从浮游细胞生长到生物膜生长的转变。破坏 c-di-GMP 介导的信号传递可以更好地理解调节以及与该生物体的各种生活方式有关的表面相关和分泌分子的贡献。B. pseudomallei 的基因组还编码了预测编码小分子的隐匿生物合成基因簇,这些小分子可能有助于生物膜生长、适应和与其他生物体的相互作用。更好地了解这些分子的调节对于理解这种多功能病原体如何改变其生活方式至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ce29/9040570/7ac1fa59e79d/aem.02431-21-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验