Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China.
Key Laboratory of Trace Element Nutrition, National Health Commission, Beijing, China.
Diabetologia. 2022 Jul;65(7):1145-1156. doi: 10.1007/s00125-022-05687-5. Epub 2022 Mar 31.
AIMS/HYPOTHESIS: The gut microbiome is mainly shaped by diet, and varies across geographical regions. Little is known about the longitudinal association of gut microbiota with glycaemic control. We aimed to identify gut microbiota prospectively associated with glycaemic traits and type 2 diabetes in a geographically diverse population, and examined the cross-sectional association of dietary or lifestyle factors with the identified gut microbiota.
The China Health and Nutrition Survey is a population-based longitudinal cohort covering 15 provinces/megacities across China. Of the participants in that study, 2772 diabetes-free participants with a gut microbiota profile based on 16S rRNA analysis were included in the present study (age 50.8 ± 12.7 years, mean ± SD). Using a multivariable-adjusted linear mixed-effects model, we examined the prospective association of gut microbiota with glycaemic traits (fasting glucose, fasting insulin, HbA and HOMA-IR). We constructed a healthy microbiome index (HMI), and used Poisson regression to examine the relationship between the HMI and incident type 2 diabetes. We evaluated the association of dietary or lifestyle factors with the glycaemic trait-related gut microbiota using a multivariable-adjusted linear regression model.
After follow-up for 3 years, 123 incident type 2 diabetes cases were identified. We identified 25 gut microbial genera positively or inversely associated with glycaemic traits. The newly created HMI (per SD unit) was inversely associated with incident type 2 diabetes (risk ratio 0.69, 95% CI 0.58, 0.84). Furthermore, we found that several microbial genera that were favourable for the glycaemic trait were consistently associated with healthy dietary habits (higher consumption of vegetable, fruit, fish and nuts).
CONCLUSIONS/INTERPRETATION: Our results revealed multiple gut microbiota prospectively associated with glycaemic traits and type 2 diabetes in a geographically diverse population, and highlighted the potential of gut microbiota-based diagnosis or therapy for type 2 diabetes.
The code for data analysis associated with the current study is available at https://github.com/wenutrition/Microbiota-T2D-CHNS.
目的/假设:肠道微生物群主要受饮食影响,并因地理位置的不同而有所差异。关于肠道微生物群与血糖控制之间的纵向关联,我们知之甚少。我们旨在鉴定与地理上多样化人群的血糖特征和 2 型糖尿病有前瞻性关联的肠道微生物群,并研究饮食或生活方式因素与所鉴定的肠道微生物群的横断面关联。
中国健康与营养调查是一项基于人群的纵向队列研究,涵盖了中国 15 个省份/特大城市。在该研究中,我们纳入了 2772 名无糖尿病且基于 16S rRNA 分析有肠道微生物组图谱的参与者(年龄 50.8±12.7 岁,均值±标准差)。我们使用多变量调整的线性混合效应模型,研究了肠道微生物群与血糖特征(空腹血糖、空腹胰岛素、HbA 和 HOMA-IR)的前瞻性关联。我们构建了一个健康微生物组指数(HMI),并使用泊松回归来研究 HMI 与 2 型糖尿病发病的关系。我们使用多变量调整的线性回归模型评估了饮食或生活方式因素与与血糖特征相关的肠道微生物群之间的关系。
随访 3 年后,共发现 123 例 2 型糖尿病新发病例。我们鉴定出 25 个与血糖特征呈正相关或负相关的肠道微生物属。新创建的 HMI(每 SD 单位)与 2 型糖尿病的发病呈负相关(风险比 0.69,95%CI 0.58,0.84)。此外,我们发现一些有利于血糖特征的微生物属与健康的饮食习惯(更高的蔬菜、水果、鱼和坚果摄入)始终相关。
结论/解释:我们的研究结果揭示了在地理上多样化的人群中,多个肠道微生物群与血糖特征和 2 型糖尿病有前瞻性关联,并强调了基于肠道微生物群的 2 型糖尿病诊断或治疗的潜力。
与本研究相关的数据分析代码可在 https://github.com/wenutrition/Microbiota-T2D-CHNS 上获得。