Suppr超能文献

人工智能评估肾瘢痕(AIRS 研究)。

Artificial Intelligence Assessment of Renal Scarring (AIRS Study).

机构信息

Department of Radiological Sciences and Center for Artificial Intelligence in Diagnostic Medicine, University of California Irvine, Orange, California.

Division of Nephrology, Department of Medicine, University of California Irvine, Orange, California.

出版信息

Kidney360. 2021 Nov 11;3(1):83-90. doi: 10.34067/KID.0003662021. eCollection 2022 Jan 27.

Abstract

BACKGROUND

The goal of the Artificial Intelligence in Renal Scarring (AIRS) study is to develop machine learning tools for noninvasive quantification of kidney fibrosis from imaging scans.

METHODS

We conducted a retrospective analysis of patients who had one or more abdominal computed tomography (CT) scans within 6 months of a kidney biopsy. The final cohort encompassed 152 CT scans from 92 patients, which included images of 300 native kidneys and 76 transplant kidneys. Two different convolutional neural networks (slice-level and voxel-level classifiers) were tested to differentiate severe versus mild/moderate kidney fibrosis (≥50% versus <50%). Interstitial fibrosis and tubular atrophy scores from kidney biopsy reports were used as ground-truth.

RESULTS

The two machine learning models demonstrated similar positive predictive value (0.886 versus 0.935) and accuracy (0.831 versus 0.879).

CONCLUSIONS

In summary, machine learning algorithms are a promising noninvasive diagnostic tool to quantify kidney fibrosis from CT scans. The clinical utility of these prediction tools, in terms of avoiding renal biopsy and associated bleeding risks in patients with severe fibrosis, remains to be validated in prospective clinical trials.

摘要

背景

人工智能在肾瘢痕(AIRS)研究中的目标是开发从成像扫描中进行非侵入性定量肾纤维化的机器学习工具。

方法

我们对在肾活检后 6 个月内进行了一次或多次腹部计算机断层扫描(CT)的患者进行了回顾性分析。最终队列包括 92 名患者的 152 次 CT 扫描,其中包括 300 个原生肾脏和 76 个移植肾脏的图像。我们测试了两种不同的卷积神经网络(切片级和体素级分类器)来区分严重和轻度/中度纤维化(≥50%与<50%)。肾活检报告中的间质纤维化和肾小管萎缩评分被用作真实数据。

结果

两种机器学习模型的阳性预测值(0.886 对 0.935)和准确率(0.831 对 0.879)相似。

结论

总之,机器学习算法是一种很有前途的非侵入性诊断工具,可以从 CT 扫描中定量肾纤维化。这些预测工具在避免严重纤维化患者的肾活检和相关出血风险方面的临床实用性,仍需在前瞻性临床试验中验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acc6/8967621/0ff2b7a5bfd5/KID.0003662021absf1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验