Suppr超能文献

拉曼光谱法无标记区分临床大肠杆菌和克雷伯菌分离株。

Label-free differentiation of clinical E. coli and Klebsiella isolates with Raman spectroscopy.

机构信息

Leibniz Institute of Photonic Technology Jena-Member of the Research Alliance "Leibniz Health Technologies", Jena, Germany.

Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Jena, Germany.

出版信息

J Biophotonics. 2022 Jul;15(7):e202200005. doi: 10.1002/jbio.202200005. Epub 2022 Apr 21.

Abstract

Raman spectroscopy is a promising spectroscopic technique for microbiological diagnostics. In routine diagnostic, the differentiation of pathogens of the Enterobacteriaceae family remain challenging. In this study, Raman spectroscopy was applied for the differentiation of 24 clinical E. coli, Klebsiella pneumoniae and Klebsiella oxytoca isolates. Spectra were collected with two spectroscopic approaches: UV-Resonance Raman spectroscopy (UVRR) and single-cell Raman microspectroscopy with 532 nm excitation. A description of the different biochemical profiles provided by the different excitation wavelengths was performed followed by machine-learning models for the classification at the genus and species levels. UVRR was shown to outperform 532 nm excitation, enabling correct classification at the genus level of 23/24 isolates. Furthermore, for the first time, Klebsiella species were correctly classified at the species level with 92% accuracy, classifying all three K. oxytoca isolates correctly. These findings should guide future applicative studies, increasing the scope of Raman spectroscopy's suitability for clinical applications.

摘要

拉曼光谱是一种很有前途的微生物诊断光谱技术。在常规诊断中,肠杆菌科病原体的区分仍然具有挑战性。在这项研究中,拉曼光谱被应用于区分 24 株临床分离的大肠杆菌、肺炎克雷伯菌和产酸克雷伯菌。使用两种光谱方法收集了光谱:紫外共振拉曼光谱(UVRR)和 532nm 激发的单细胞拉曼微光谱。对不同激发波长提供的不同生化特征进行了描述,随后进行了基于机器学习的属和种水平的分类模型。结果表明,UVRR 优于 532nm 激发,能够正确区分 24 株分离物中的 23 株。此外,这是首次使用 92%的准确率正确地对克雷伯菌属进行了种水平的分类,正确地区分了所有 3 株产酸克雷伯菌分离株。这些发现应该为未来的应用研究提供指导,增加拉曼光谱在临床应用中的适用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验