Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA.
Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
Science. 2022 Apr 8;376(6589):203-207. doi: 10.1126/science.abk0463. Epub 2022 Apr 7.
Advances in nanoscale self-assembly have enabled the formation of complex nanoscale architectures. However, the development of self-assembly strategies toward bottom-up nanofabrication is impeded by challenges in revealing these structures volumetrically at the single-component level and with elemental sensitivity. Leveraging advances in nano-focused hard x-rays, DNA-programmable nanoparticle assembly, and nanoscale inorganic templating, we demonstrate nondestructive three-dimensional imaging of complexly organized nanoparticles and multimaterial frameworks. In a three-dimensional lattice with a size of 2 micrometers, we determined the positions of about 10,000 individual nanoparticles with 7-nanometer resolution, and identified arrangements of assembly motifs and a resulting multimaterial framework with elemental sensitivity. The real-space reconstruction permits direct three-dimensional imaging of lattices, which reveals their imperfections and interfaces and also clarifies the relationship between lattices and assembly motifs.
纳米自组装技术的进步使得复杂的纳米结构得以形成。然而,自组装策略在向基于 Bottom-up 的纳米制造发展的过程中,受到了在单一组分水平上以元素灵敏度揭示这些结构的挑战的阻碍。利用纳米聚焦硬 X 射线、DNA 可编程纳米粒子组装和纳米级无机模板的进步,我们展示了复杂组织的纳米粒子和多材料框架的非破坏性三维成像。在一个 2 微米大小的三维晶格中,我们以 7 纳米的分辨率确定了大约 10000 个单个纳米粒子的位置,并以元素灵敏度识别了组装基序的排列和由此产生的多材料框架。实空间重构允许对晶格进行直接的三维成像,这揭示了它们的不完美和界面,也澄清了晶格和组装基序之间的关系。