文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于肿瘤和瘤周双区域影像组学特征的肝细胞癌微血管侵犯风险等级术前预测

Preoperative Prediction of Microvascular Invasion Risk Grades in Hepatocellular Carcinoma Based on Tumor and Peritumor Dual-Region Radiomics Signatures.

作者信息

Hu Fang, Zhang Yuhan, Li Man, Liu Chen, Zhang Handan, Li Xiaoming, Liu Sanyuan, Hu Xiaofei, Wang Jian

机构信息

Department of Radiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.

Department of Radiology, Tongliang District People's Hospital, Chongqing, China.

出版信息

Front Oncol. 2022 Mar 22;12:853336. doi: 10.3389/fonc.2022.853336. eCollection 2022.


DOI:10.3389/fonc.2022.853336
PMID:35392229
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8981726/
Abstract

OBJECTIVE: To predict preoperative microvascular invasion (MVI) risk grade by analyzing the radiomics signatures of tumors and peritumors on enhanced magnetic resonance imaging (MRI) images of hepatocellular carcinoma (HCC). METHODS: A total of 501 HCC patients (training cohort n = 402, testing cohort n = 99) who underwent preoperative Gd-EOB-DTPA-enhanced MRI and curative liver resection within a month were studied retrospectively. Radiomics signatures were selected using the least absolute shrinkage and selection operator (Lasso) algorithm. Unimodal radiomics models based on tumors and peritumors (10mm or 20mm) were established using the Logistic algorithm, using plain T1WI, arterial phase (AP), portal venous phase (PVP), and hepatobiliary phase (HBP) images. Multimodal radiomics models based on different regions of interest (ROIs) were established using a combinatorial modeling approach. Moreover, we merged radiomics signatures and clinico-radiological features to build unimodal and multimodal clinical radiomics models. RESULTS: In the testing cohort, the AUC of the dual-region (tumor & peritumor 20 mm)radiomics model and single-region (tumor) radiomics model were 0.741 vs 0.694, 0.733 vs 0.725, 0.667 vs 0.710, and 0.559 vs 0.677, respectively, according to AP, PVP, T1WI, and HBP images. The AUC of the final clinical radiomics model based on tumor and peritumoral 20mm incorporating radiomics features in AP&PVP&T1WI images for predicting MVI classification in the training and testing cohorts were 0.962 and 0.852, respectively. CONCLUSION: The radiomics signatures of the dual regions for tumor and peritumor on AP and PVP images are of significance to predict MVI.

摘要

目的:通过分析肝细胞癌(HCC)增强磁共振成像(MRI)图像上肿瘤及瘤周的放射组学特征,预测术前微血管侵犯(MVI)风险等级。 方法:回顾性研究501例接受术前钆塞酸二钠增强MRI检查并在1个月内接受根治性肝切除术的HCC患者(训练队列n = 402,测试队列n = 99)。使用最小绝对收缩和选择算子(Lasso)算法选择放射组学特征。基于肿瘤和瘤周(10mm或20mm)的单峰放射组学模型采用Logistic算法建立,使用平扫T1WI、动脉期(AP)、门静脉期(PVP)和肝胆期(HBP)图像。基于不同感兴趣区域(ROI)的多峰放射组学模型采用组合建模方法建立。此外,我们将放射组学特征与临床放射学特征合并,构建单峰和多峰临床放射组学模型。 结果:在测试队列中,根据AP、PVP、T1WI和HBP图像,双区域(肿瘤和瘤周20mm)放射组学模型和单区域(肿瘤)放射组学模型的AUC分别为0.741对0.694、0.733对0.725、0.667对0.710和0.559对0.677。基于肿瘤和瘤周20mm并纳入AP&PVP&T1WI图像放射组学特征的最终临床放射组学模型在训练和测试队列中预测MVI分类的AUC分别为0.962和0.852。 结论:AP和PVP图像上肿瘤和瘤周双区域的放射组学特征对预测MVI具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/47cd65af31ba/fonc-12-853336-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/db477d2e7b8f/fonc-12-853336-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/f98a1b77c316/fonc-12-853336-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/5480762d4f4f/fonc-12-853336-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/8f9cb323ba97/fonc-12-853336-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/47cd65af31ba/fonc-12-853336-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/db477d2e7b8f/fonc-12-853336-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/f98a1b77c316/fonc-12-853336-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/5480762d4f4f/fonc-12-853336-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/8f9cb323ba97/fonc-12-853336-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a966/8981726/47cd65af31ba/fonc-12-853336-g005.jpg

相似文献

[1]
Preoperative Prediction of Microvascular Invasion Risk Grades in Hepatocellular Carcinoma Based on Tumor and Peritumor Dual-Region Radiomics Signatures.

Front Oncol. 2022-3-22

[2]
Preoperative Evaluation of Gd-EOB-DTPA-Enhanced MRI Radiomics-Based Nomogram in Small Solitary Hepatocellular Carcinoma (≤3 cm) With Microvascular Invasion: A Two-Center Study.

J Magn Reson Imaging. 2022-11

[3]
Considerable effects of imaging sequences, feature extraction, feature selection, and classifiers on radiomics-based prediction of microvascular invasion in hepatocellular carcinoma using magnetic resonance imaging.

Quant Imaging Med Surg. 2021-5

[4]
Radiomics nomogram for prediction of microvascular invasion in hepatocellular carcinoma based on MR imaging with Gd-EOB-DTPA.

Front Oncol. 2022-11-1

[5]
Preoperative prediction of microvascular invasion in hepatocellular cancer: a radiomics model using Gd-EOB-DTPA-enhanced MRI.

Eur Radiol. 2019-1-28

[6]
Radiomic analysis of Gd-EOB-DTPA-enhanced MRI predicts Ki-67 expression in hepatocellular carcinoma.

BMC Med Imaging. 2021-6-15

[7]
Radiomics Analysis of MR Imaging with Gd-EOB-DTPA for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: Investigation and Comparison of Different Hepatobiliary Phase Delay Times.

Biomed Res Int. 2021-1-7

[8]
A Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma ≤ 5 cm.

Front Oncol. 2022-5-19

[9]
Influence of different region of interest sizes on CT-based radiomics model for microvascular invasion prediction in hepatocellular carcinoma.

Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2022-8-28

[10]
Evaluation of Preoperative Microvascular Invasion in Hepatocellular Carcinoma Through Multidimensional Parameter Combination Modeling Based on Gd-EOB-DTPA MRI.

J Clin Transl Hepatol. 2023-4-28

引用本文的文献

[1]
Combining serum biomarkers and MRI radiomics to predict treatment outcome after thermal ablation in hepatocellular carcinoma.

Am J Transl Res. 2025-3-15

[2]
Advances in multi-omics studies of microvascular invasion in hepatocellular carcinoma.

Eur J Med Res. 2025-3-13

[3]
Advancing Hepatocellular Carcinoma Management Through Peritumoral Radiomics: Enhancing Diagnosis, Treatment, and Prognosis.

J Hepatocell Carcinoma. 2024-11-4

[4]
Preoperative prediction of microvascular invasion risk in hepatocellular carcinoma with MRI: peritumoral versus tumor region.

Insights Imaging. 2024-8-1

[5]
Multiparametric MRI-based intratumoral and peritumoral radiomics for predicting the pathological differentiation of hepatocellular carcinoma.

Insights Imaging. 2024-3-27

[6]
Radiomics features based on dual-area CT predict the expression levels of fatty acid binding protein 4 and outcome in hepatocellular carcinoma.

Abdom Radiol (NY). 2024-6

[7]
Current status of magnetic resonance imaging radiomics in hepatocellular carcinoma: A quantitative review with Radiomics Quality Score.

World J Gastroenterol. 2024-1-28

[8]
A Nomogram of Magnetic Resonance Imaging for Preoperative Assessment of Microvascular Invasion and Prognosis of Hepatocellular Carcinoma.

Dig Dis Sci. 2023-12

[9]
Radiomics features of computed tomography and magnetic resonance imaging for predicting response to transarterial chemoembolization in hepatocellular carcinoma: a meta-analysis.

Front Oncol. 2023-7-13

本文引用的文献

[1]
Preoperative identification of microvascular invasion in hepatocellular carcinoma by XGBoost and deep learning.

J Cancer Res Clin Oncol. 2021-3

[2]
Contrast-enhanced CT radiomics for preoperative evaluation of microvascular invasion in hepatocellular carcinoma: A two-center study.

Clin Transl Med. 2020-6

[3]
Pre-operative Microvascular Invasion Prediction Using Multi-parametric Liver MRI Radiomics.

J Digit Imaging. 2020-12

[4]
Texture analysis on preoperative contrast-enhanced magnetic resonance imaging identifies microvascular invasion in hepatocellular carcinoma.

HPB (Oxford). 2020-11

[5]
Radiomic Features at Contrast-enhanced CT Predict Recurrence in Early Stage Hepatocellular Carcinoma: A Multi-Institutional Study.

Radiology. 2020-1-14

[6]
A Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma.

Liver Cancer. 2019-10

[7]
A nomogram based on bi-regional radiomics features from multimodal magnetic resonance imaging for preoperative prediction of microvascular invasion in hepatocellular carcinoma.

Quant Imaging Med Surg. 2019-9

[8]
Microvascular invasion in hepatocellular carcinoma: is it predictable with quantitative computed tomography parameters?

Radiol Bras. 2019

[9]
Radiomics models for diagnosing microvascular invasion in hepatocellular carcinoma: which model is the best model?

Cancer Imaging. 2019-8-28

[10]
Model-based three-dimensional texture analysis of contrast-enhanced magnetic resonance imaging as a potential tool for preoperative prediction of microvascular invasion in hepatocellular carcinoma.

Oncol Lett. 2019-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索