Suppr超能文献

定量和定性远程数据收集策略:来自新冠疫情的经验教训

The Strategies for Quantitative and Qualitative Remote Data Collection: Lessons From the COVID-19 Pandemic.

作者信息

Tiersma Keenae, Reichman Mira, Popok Paula J, Nelson Zoe, Barry Maura, Elwy A Rani, Flores Efrén J, Irwin Kelly E, Vranceanu Ana-Maria

机构信息

Department of Radiology, Massachusetts General Hospital, Boston, MA, United States.

Department of Psychiatric Oncology, Massachusetts General Hospital, Boston, MA, United States.

出版信息

JMIR Form Res. 2022 Apr 8;6(4):e30055. doi: 10.2196/30055.

Abstract

The COVID-19 pandemic has necessitated a rapid shift to web-based or blended design models for both ongoing and future clinical research activities. Research conducted virtually not only has the potential to increase the patient-centeredness of clinical research but may also further widen existing disparities in research participation among underrepresented individuals. In this viewpoint, we discuss practical strategies for quantitative and qualitative remote research data collection based on previous literature and our own ongoing clinical research to overcome challenges presented by the shift to remote data collection. We aim to contribute to and catalyze the dissemination of best practices related to remote data collection methodologies to address the opportunities presented by this shift and develop strategies for inclusive research.

摘要

新冠疫情使得正在进行的和未来的临床研究活动都需要迅速转向基于网络或混合式设计模式。虚拟开展的研究不仅有可能提高临床研究以患者为中心的程度,还可能进一步扩大未被充分代表的个体在研究参与方面现有的差距。在这一观点中,我们基于以往文献和我们自己正在进行的临床研究,讨论定量和定性远程研究数据收集的实用策略,以克服向远程数据收集转变所带来的挑战。我们旨在推动并促进与远程数据收集方法相关的最佳实践的传播,以应对这一转变带来的机遇,并制定包容性研究的策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ad/9034421/860acd180edc/formative_v6i4e30055_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验