Suppr超能文献

相似文献

1
[Recognition of motor imagery electroencephalogram based on flicker noise spectroscopy and weighted filter bank common spatial pattern].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2023 Dec 25;40(6):1126-1134. doi: 10.7507/1001-5515.202302020.
2
[Research on the feature representation of motor imagery electroencephalogram signal based on individual adaptation].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2022 Dec 25;39(6):1173-1180. doi: 10.7507/1001-5515.202112023.
3
[Convolutional neural network based on temporal-spatial feature learning for motor imagery electroencephalogram signal decoding].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Feb 25;38(1):1-9. doi: 10.7507/1001-5515.202007006.
5
Motor imagery EEG classification based on ensemble support vector learning.
Comput Methods Programs Biomed. 2020 Sep;193:105464. doi: 10.1016/j.cmpb.2020.105464. Epub 2020 Mar 27.
8
Class discrepancy-guided sub-band filter-based common spatial pattern for motor imagery classification.
J Neurosci Methods. 2019 Jul 15;323:98-107. doi: 10.1016/j.jneumeth.2019.05.011. Epub 2019 May 26.
9
Filter Bank Regularized Common Spatial Pattern Ensemble for Small Sample Motor Imagery Classification.
IEEE Trans Neural Syst Rehabil Eng. 2018 Feb;26(2):498-505. doi: 10.1109/TNSRE.2017.2757519. Epub 2017 Sep 28.
10
Multi-view optimization of time-frequency common spatial patterns for brain-computer interfaces.
J Neurosci Methods. 2022 Jan 1;365:109378. doi: 10.1016/j.jneumeth.2021.109378. Epub 2021 Oct 6.

本文引用的文献

1
A novel classification method for EEG-based motor imagery with narrow band spatial filters and deep convolutional neural network.
Cogn Neurodyn. 2022 Apr;16(2):379-389. doi: 10.1007/s11571-021-09721-x. Epub 2021 Sep 28.
2
A Two-Branch CNN Fusing Temporal and Frequency Features for Motor Imagery EEG Decoding.
Entropy (Basel). 2022 Mar 8;24(3):376. doi: 10.3390/e24030376.
3
Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks.
J Neurosci Methods. 2022 Apr 1;371:109495. doi: 10.1016/j.jneumeth.2022.109495. Epub 2022 Feb 9.
4
Multi-view optimization of time-frequency common spatial patterns for brain-computer interfaces.
J Neurosci Methods. 2022 Jan 1;365:109378. doi: 10.1016/j.jneumeth.2021.109378. Epub 2021 Oct 6.
5
[Execution, assessment and improvement methods of motor imagery for brain-computer interface].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Jun 25;38(3):434-446. doi: 10.7507/1001-5515.202101037.
6
Deep Representation-Based Domain Adaptation for Nonstationary EEG Classification.
IEEE Trans Neural Netw Learn Syst. 2021 Feb;32(2):535-545. doi: 10.1109/TNNLS.2020.3010780. Epub 2021 Feb 4.
7
Feature extraction and classification for EEG signals using wavelet transform and machine learning techniques.
Australas Phys Eng Sci Med. 2015 Mar;38(1):139-49. doi: 10.1007/s13246-015-0333-x. Epub 2015 Feb 4.
8
Review of the BCI Competition IV.
Front Neurosci. 2012 Jul 13;6:55. doi: 10.3389/fnins.2012.00055. eCollection 2012.
9
Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b.
Front Neurosci. 2012 Mar 29;6:39. doi: 10.3389/fnins.2012.00039. eCollection 2012.
10
A generative model approach for decoding in the visual event-related potential-based brain-computer interface speller.
J Neural Eng. 2010 Apr;7(2):26003. doi: 10.1088/1741-2560/7/2/026003. Epub 2010 Feb 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验