Suppr超能文献

通过创伤性脑损伤研究开放数据共享库实现数据共享与分析赋能。

Empowering Data Sharing and Analytics through the Open Data Commons for Traumatic Brain Injury Research.

作者信息

Chou Austin, Torres-Espín Abel, Huie J Russell, Krukowski Karen, Lee Sangmi, Nolan Amber, Guglielmetti Caroline, Hawkins Bridget E, Chaumeil Myriam M, Manley Geoffrey T, Beattie Michael S, Bresnahan Jacqueline C, Martone Maryann E, Grethe Jeffrey S, Rosi Susanna, Ferguson Adam R

机构信息

Brain and Spinal Injury Center, University of California San Francisco, San Francisco, California, USA.

Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA.

出版信息

Neurotrauma Rep. 2022 Apr 5;3(1):139-157. doi: 10.1089/neur.2021.0061. eCollection 2022.

Abstract

Traumatic brain injury (TBI) is a major public health problem. Despite considerable research deciphering injury pathophysiology, precision therapies remain elusive. Here, we present large-scale data sharing and machine intelligence approaches to leverage TBI complexity. The Open Data Commons for TBI (ODC-TBI) is a community-centered repository emphasizing Findable, Accessible, Interoperable, and Reusable data sharing and publication with persistent identifiers. Importantly, the ODC-TBI implements data sharing of individual subject data, enabling pooling for high-sample-size, feature-rich data sets for machine learning analytics. We demonstrate pooled ODC-TBI data analyses, starting with descriptive analytics of subject-level data from 11 previously published articles ( = 1250 subjects) representing six distinct pre-clinical TBI models. Second, we perform unsupervised machine learning on multi-cohort data to identify persistent inflammatory patterns across different studies, improving experimental sensitivity for pro- versus anti-inflammation effects. As funders and journals increasingly mandate open data practices, ODC-TBI will create new scientific opportunities for researchers and facilitate multi-data-set, multi-dimensional analytics toward effective translation.

摘要

创伤性脑损伤(TBI)是一个重大的公共卫生问题。尽管在解读损伤病理生理学方面进行了大量研究,但精准治疗仍然难以实现。在此,我们提出大规模数据共享和机器学习方法,以利用TBI的复杂性。创伤性脑损伤开放数据共享库(ODC-TBI)是一个以社区为中心的存储库,强调可查找、可访问、可互操作和可重复使用的数据共享与发布,并带有持久标识符。重要的是,ODC-TBI实现了个体受试者数据的共享,能够汇集高样本量、特征丰富的数据集用于机器学习分析。我们展示了对ODC-TBI数据的汇总分析,首先对来自11篇先前发表文章(n = 1250名受试者)的受试者水平数据进行描述性分析,这些文章代表了六种不同的临床前TBI模型。其次,我们对多队列数据进行无监督机器学习,以识别不同研究中持续存在的炎症模式,提高对促炎与抗炎作用的实验敏感性。随着资助者和期刊越来越多地要求实行开放数据做法,ODC-TBI将为研究人员创造新的科学机会,并促进针对有效转化的多数据集、多维度分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3952/8985540/85c4eed45a5c/neur.2021.0061_figure1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验