The Moody Project for Translational Traumatic Brain Injury Research, Department of Anesthesiology, University of Texas Medical Branch, Galveston, Texas, USA.
Weill Institutes for Neurosciences, Brain and Spinal Injury Center, Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA.
J Neurotrauma. 2020 Nov 15;37(22):2414-2423. doi: 10.1089/neu.2018.6192. Epub 2019 Mar 29.
Translation of traumatic brain injury (TBI) research findings from bench to bedside involves aligning multi-species data across diverse data types including imaging and molecular biomarkers, histopathology, behavior, and functional outcomes. In this review we argue that TBI translation should be acknowledged for what it is: a problem of big data that can be addressed using modern data science approaches. We review the history of the term , tracing its origins in Internet technology as data that are "big" according to the "4Vs" of , , and discuss how the term has transitioned into the mainstream of biomedical research. We argue that the problem of TBI translation fundamentally centers around data and that solutions to this problem can be found in modern machine learning and other cutting-edge analytical approaches. Throughout our discussion we highlight the need to pull data from diverse sources including unpublished data ("dark data") and "long-tail data" (small, specialty TBI datasets undergirding the published literature). We review a few early examples of published articles in both the pre-clinical and clinical TBI research literature to demonstrate how data reuse can drive new discoveries leading into translational therapies. Making TBI data resources more Findable, Accessible, Interoperable, and Reusable (FAIR) through better data stewardship has great potential to accelerate discovery and translation for the silent epidemic of TBI.
创伤性脑损伤(TBI)研究发现从实验室到临床的转化涉及到跨多种数据类型(包括影像学和分子生物标志物、组织病理学、行为和功能结果)对齐多物种数据。在这篇综述中,我们认为 TBI 转化应该被认为是什么:这是一个大数据问题,可以使用现代数据科学方法来解决。我们回顾了这个术语的历史,追溯了它在互联网技术中的起源,根据“4Vs”(体积、速度、多样性和真实性)的数据是“大”的,讨论了这个术语是如何过渡到生物医学研究的主流的。我们认为,TBI 转化的根本问题集中在数据上,这个问题的解决方案可以在现代机器学习和其他前沿分析方法中找到。在整个讨论中,我们强调需要从各种来源(包括未发表的数据(“暗数据”)和“长尾数据”(支撑已发表文献的小型、专业 TBI 数据集))中提取数据。我们回顾了一些早期的临床前和临床 TBI 研究文献中的发表文章的例子,以展示数据再利用如何推动新发现,从而转化为治疗方法。通过更好的数据管理使 TBI 数据资源更易发现、获取、互操作和重用(FAIR),具有很大的潜力加速 TBI 这一无声流行病的发现和转化。