Le Hoang, Hoch Justine E, Ossmy Ori, Adolph Karen E, Fern Xiaoli, Fern Alan
School of EECS, Oregon State University.
Department of Psychology, New York University.
IEEE Int Conf Dev Learn (2021). 2021 Aug;2021. doi: 10.1109/icdl49984.2021.9515677. Epub 2021 Aug 20.
Infants' free-play behavior is highly variable. However, in developmental science, traditional analysis tools for modeling and understanding variable behavior are limited. Here, we used Hidden Markov Models (HMMs) to capture behavioral states that govern infants' toy selection during 20 minutes of free play in a new environment. We demonstrate that applying HMMs to infant data can identify hidden behavioral states and thereby reveal the underlying structure of infant toy selection and how toy selection changes in real time during spontaneous free play. More broadly, we propose that hidden-state models provide a fruitful avenue for understanding individual differences in spontaneous infant behavior.
婴儿的自由玩耍行为具有高度的变异性。然而,在发展科学中,用于建模和理解可变行为的传统分析工具是有限的。在这里,我们使用隐马尔可夫模型(HMM)来捕捉在新环境中20分钟自由玩耍期间支配婴儿玩具选择的行为状态。我们证明,将HMM应用于婴儿数据可以识别隐藏的行为状态,从而揭示婴儿玩具选择的潜在结构,以及在自发自由玩耍期间玩具选择如何实时变化。更广泛地说,我们提出隐藏状态模型为理解婴儿自发行为中的个体差异提供了一条富有成效的途径。