Suppr超能文献

基于个性化移动感知的监督深度学习模型预测精神分裂症患者的精神病复发。

Psychotic Relapse Prediction in Schizophrenia Patients Using A Personalized Mobile Sensing-Based Supervised Deep Learning Model.

出版信息

IEEE J Biomed Health Inform. 2023 Jul;27(7):3246-3257. doi: 10.1109/JBHI.2023.3265684. Epub 2023 Jun 30.

Abstract

Mobile sensing-based modeling of behavioral changes could predict an oncoming psychotic relapse in schizophrenia patients for timely interventions. Deep learning models could complement existing non-deep learning models for relapse prediction by modeling the latent behavioral features relevant to prediction. However, given the inter-individual behavioral differences, model personalization might be required. In this work, we propose RelapsePredNet, a Long Short-Term Memory (LSTM) neural network-based model for relapse prediction. The model is personalized for a particular patient by using data from patients most similar to the given patient based on their demographics or baseline mental health scores. RelapsePredNet was compared with a deep learning-based anomaly detection model for relapse prediction. Additionally, we investigated if RelapsePredNet could complement ClusterRFModel (a random forest model leveraging clustering and template features proposed in prior work) in a fusion model. The CrossCheck dataset consisting of continuous mobile sensing data obtained from 63 schizophrenia patients, each monitored for up to a year, was used for our evaluations. RelapsePredNet outperformed the deep learning-based anomaly detection for relapse prediction with an F2 score of 0.21 and 0.52 in the full test set and the Relapse Test Set (consisting of data from patients who have had relapse only), respectively, representing a 29.4% and 38.8% improvement. Patients' social functioning scale (SFS) score was found to be the best personalization metric to define patient similarity. RelapsePredNet complemented the ClusterRFModel as it improved the F2 score by 26.1% with a fusion model, resulting in an F2 score of 0.30 in the full test set.

摘要

基于移动感应的行为变化建模可以预测精神分裂症患者即将出现的精神病复发,以便及时进行干预。深度学习模型可以通过对与预测相关的潜在行为特征进行建模,补充现有的非深度学习模型,以进行复发预测。然而,鉴于个体间的行为差异,可能需要进行模型个性化处理。在这项工作中,我们提出了 RelapsePredNet,这是一种基于长短期记忆 (LSTM) 神经网络的复发预测模型。该模型通过使用与特定患者最相似的患者的数据来实现患者个性化,这些患者与特定患者的人口统计学数据或基线心理健康评分相似。我们将 RelapsePredNet 与一种基于深度学习的异常检测模型进行了比较,用于复发预测。此外,我们还研究了 RelapsePredNet 是否可以在融合模型中补充 ClusterRFModel(一种利用聚类和模板特征的随机森林模型,该模型是先前工作中提出的)。我们的评估使用了包含 63 名精神分裂症患者连续移动感应数据的 CrossCheck 数据集,每个患者的监测时间长达一年。RelapsePredNet 在复发预测方面优于基于深度学习的异常检测模型,在全测试集和仅包含复发患者数据的复发测试集中的 F2 分数分别为 0.21 和 0.52,分别提高了 29.4%和 38.8%。患者的社会功能量表 (SFS) 得分被发现是定义患者相似性的最佳个性化指标。RelapsePredNet 补充了 ClusterRFModel,因为它通过融合模型将 F2 分数提高了 26.1%,在全测试集中的 F2 分数达到 0.30。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验