Suppr超能文献

基于CT的影像组学分析预测结直肠癌肝转移肝切除术后的组织病理学结果

CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases.

作者信息

Granata Vincenza, Fusco Roberta, Setola Sergio Venanzio, De Muzio Federica, Dell' Aversana Federica, Cutolo Carmen, Faggioni Lorenzo, Miele Vittorio, Izzo Francesco, Petrillo Antonella

机构信息

Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy.

Medical Oncology Division, Igea SpA, 80013 Napoli, Italy.

出版信息

Cancers (Basel). 2022 Mar 24;14(7):1648. doi: 10.3390/cancers14071648.

Abstract

PURPOSE

We aimed to assess the efficacy of radiomic features extracted by computed tomography (CT) in predicting histopathological outcomes following liver resection in colorectal liver metastases patients, evaluating recurrence, mutational status, histopathological characteristics (mucinous), and surgical resection margin.

METHODS

This retrospectively approved study included a training set and an external validation set. The internal training set included 49 patients with a median age of 60 years and 119 liver colorectal metastases. The validation cohort consisted of 28 patients with single liver colorectal metastasis and a median age of 61 years. Radiomic features were extracted using PyRadiomics on CT portal phase. Nonparametric Kruskal-Wallis tests, intraclass correlation, receiver operating characteristic (ROC) analyses, linear regression modeling, and pattern recognition methods (support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and decision tree (DT)) were considered.

RESULTS

The median value of intraclass correlation coefficients for the features was 0.92 (range 0.87-0.96). The best performance in discriminating expansive versus infiltrative front of tumor growth was wavelet_HHL_glcm_Imc2, with an accuracy of 79%, a sensitivity of 84%, and a specificity of 67%. The best performance in discriminating expansive versus tumor budding was wavelet_LLL_firstorder_Mean, with an accuracy of 86%, a sensitivity of 91%, and a specificity of 65%. The best performance in differentiating the mucinous type of tumor was original_firstorder_RobustMeanAbsoluteDeviation, with an accuracy of 88%, a sensitivity of 42%, and a specificity of 100%. The best performance in identifying tumor recurrence was the wavelet_HLH_glcm_Idmn, with an accuracy of 85%, a sensitivity of 81%, and a specificity of 88%. The best linear regression model was obtained with the identification of recurrence considering the linear combination of the 16 significant textural metrics (accuracy of 97%, sensitivity of 94%, and specificity of 98%). The best performance for each outcome was reached using KNN as a classifier with an accuracy greater than 86% in the training and validation sets for each classification problem; the best results were obtained with the identification of tumor front growth considering the seven significant textural features (accuracy of 97%, sensitivity of 90%, and specificity of 100%).

CONCLUSIONS

This study confirmed the capacity of radiomics data to identify several prognostic features that may affect the treatment choice in patients with liver metastases, in order to obtain a more personalized approach.

摘要

目的

我们旨在评估通过计算机断层扫描(CT)提取的放射组学特征在预测结直肠癌肝转移患者肝切除术后组织病理学结果、评估复发、突变状态、组织病理学特征(黏液性)和手术切缘方面的疗效。

方法

这项经回顾性批准的研究包括一个训练集和一个外部验证集。内部训练集包括49例患者,中位年龄60岁,有119个肝结直肠癌转移灶。验证队列由28例单发肝结直肠癌转移患者组成,中位年龄61岁。使用PyRadiomics在CT门静脉期提取放射组学特征。考虑了非参数Kruskal-Wallis检验、组内相关性、受试者操作特征(ROC)分析、线性回归建模和模式识别方法(支持向量机(SVM)、k近邻(KNN)、人工神经网络(NNET)和决策树(DT))。

结果

特征的组内相关系数中位数为0.92(范围0.87 - 0.96)。在区分肿瘤生长的膨胀性与浸润性前沿方面表现最佳的是wavelet_HHL_glcm_Imc2,准确率为79%,灵敏度为84%,特异度为67%。在区分膨胀性与肿瘤芽生方面表现最佳的是wavelet_LLL_firstorder_Mean,准确率为86%,灵敏度为91%,特异度为65%。在区分肿瘤黏液性类型方面表现最佳的是original_firstorder_RobustMeanAbsoluteDeviation,准确率为88%,灵敏度为42%,特异度为100%。在识别肿瘤复发方面表现最佳的是wavelet_HLH_glcm_Idmn,准确率为85%,灵敏度为81%,特异度为88%。通过考虑16个显著纹理指标的线性组合来识别复发,获得了最佳线性回归模型(准确率97%,灵敏度94%,特异度98%)。对于每个结果,使用KNN作为分类器达到了最佳性能,在每个分类问题的训练集和验证集中准确率均大于86%;通过考虑七个显著纹理特征来识别肿瘤前沿生长获得了最佳结果(准确率97%,灵敏度90%,特异度100%)。

结论

本研究证实了放射组学数据能够识别几种可能影响肝转移患者治疗选择的预后特征,从而获得更个性化的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0d5c/8996874/0c10d82c15f6/cancers-14-01648-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验