Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Heart and Lung Transplant Research Laborator, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
Department of Thoracic Surgery, The University of Tokyo Graduate School of Medicine, Tokyo, Japan; Department of Cardiovascular and Thoracic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
J Heart Lung Transplant. 2022 Jun;41(6):722-731. doi: 10.1016/j.healun.2022.03.010. Epub 2022 Mar 22.
Standardized uptake values (SUVs) derived from F-fluorodeoxyglucose (F-FDG) positron emission tomography (PET) are valuable but insufficient for detecting lung allograft rejection (AR). Using a rat lung transplantation (LTx) model, we investigated correlations of AR with the SUV and PET-derived radiomics and further evaluated the performance of machine learning (ML)-based radiomics for monitoring AR.
LTx was performed on 4 groups of rats: isograft, allograft-cyclosporine (CsA), allograft-CsA, and allograft-CsA. Each rat underwent F-FDG PET at week 3 or 6. The SUV and radiomic features were extracted from the PET images. Least absolute shrinkage and selection operator regression was used to construct a radiomics score (Rad-score). Ten modeling algorithms with 7 feature selection methods were performed to develop 70 radiomics models (49 ML models and 21 logistic regression models) for monitoring AR, validated using the bootstrap method.
In total, 837 radiomic features were extracted from each PET image. The SUV and Rad-score showed significant positive correlations with histopathology (p < .05). The area under the curve (AUC) of SUV for detecting AR was 0.783. The median AUC of ML models was 0.921, which was superior to that of logistic regression models (median AUC, 0.721). The optimal ML model using a random forest modeling algorithm with random forest feature selection method exhibited the highest AUC of 0.982 (95% confidence interval, 0.875-1.000) in all models.
SUV provided a good correlation with AR, but ML-based PET radiomics further strengthened the power of F-FDG PET functional imaging for monitoring AR in LTx.
来源于 F-氟代脱氧葡萄糖(F-FDG)正电子发射断层扫描(PET)的标准化摄取值(SUV)虽然有价值,但不足以检测肺移植物排斥(AR)。我们使用大鼠肺移植(LTx)模型,研究了 AR 与 SUV 和 PET 衍生的放射组学之间的相关性,并进一步评估了基于机器学习(ML)的放射组学在监测 AR 中的性能。
在 4 组大鼠中进行 LTx:同系移植物、同种异体移植-环孢素(CsA)、同种异体移植-CsA 和同种异体移植-CsA。每只大鼠在第 3 或 6 周进行 F-FDG PET。从 PET 图像中提取 SUV 和放射组学特征。使用最小绝对收缩和选择算子回归构建放射组学评分(Rad-score)。使用 bootstrap 方法验证,使用 7 种特征选择方法对 10 种建模算法进行了 70 种放射组学模型(49 个 ML 模型和 21 个逻辑回归模型)的开发,以监测 AR。
总共从每个 PET 图像中提取了 837 个放射组学特征。SUV 和 Rad-score 与组织病理学呈显著正相关(p<0.05)。SUV 检测 AR 的曲线下面积(AUC)为 0.783。ML 模型的 AUC 中位数为 0.921,优于逻辑回归模型(中位数 AUC,0.721)。在所有模型中,使用随机森林建模算法和随机森林特征选择方法的最佳 ML 模型的 AUC 最高,为 0.982(95%置信区间,0.875-1.000)。
SUV 与 AR 相关性良好,但基于 ML 的 PET 放射组学进一步增强了 F-FDG PET 功能成像监测 LTx 中 AR 的能力。