文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光交联水凝胶在生物医学工程中的应用现状

Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering.

作者信息

Liu Juan, Su Chunyu, Chen Yutong, Tian Shujing, Lu Chunxiu, Huang Wei, Lv Qizhuang

机构信息

College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China.

Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China.

出版信息

Gels. 2022 Apr 1;8(4):216. doi: 10.3390/gels8040216.


DOI:10.3390/gels8040216
PMID:35448118
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9026461/
Abstract

Hydrogel materials have great application value in biomedical engineering. Among them, photocrosslinked hydrogels have attracted much attention due to their variety and simple convenient preparation methods. Here, we provide a systematic review of the biomedical-engineering applications of photocrosslinked hydrogels. First, we introduce the types of photocrosslinked hydrogel monomers, and the methods for preparation of photocrosslinked hydrogels with different morphologies are summarized. Subsequently, various biomedical applications of photocrosslinked hydrogels are reviewed. Finally, some shortcomings and development directions for photocrosslinked hydrogels are considered and proposed. This paper is designed to give researchers in related fields a systematic understanding of photocrosslinked hydrogels and provide inspiration to seek new development directions for studies of photocrosslinked hydrogels or related materials.

摘要

水凝胶材料在生物医学工程领域具有巨大的应用价值。其中,光交联水凝胶因其种类多样且制备方法简便而备受关注。在此,我们对光交联水凝胶在生物医学工程中的应用进行系统综述。首先,我们介绍光交联水凝胶单体的类型,并总结制备不同形态光交联水凝胶的方法。随后,对光交联水凝胶的各种生物医学应用进行综述。最后,思考并提出光交联水凝胶的一些缺点和发展方向。本文旨在使相关领域的研究人员对光交联水凝胶有系统的了解,并为探索光交联水凝胶或相关材料研究的新发展方向提供启发。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/aa443ab36338/gels-08-00216-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/d3497b552283/gels-08-00216-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/943997ed1f99/gels-08-00216-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/5ea69a0fc216/gels-08-00216-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/283f92df47d6/gels-08-00216-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/63ebd124f6c9/gels-08-00216-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/cfffc99ac670/gels-08-00216-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/a9a86c707912/gels-08-00216-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/aa443ab36338/gels-08-00216-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/d3497b552283/gels-08-00216-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/943997ed1f99/gels-08-00216-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/5ea69a0fc216/gels-08-00216-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/283f92df47d6/gels-08-00216-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/63ebd124f6c9/gels-08-00216-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/cfffc99ac670/gels-08-00216-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/a9a86c707912/gels-08-00216-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f3a4/9026461/aa443ab36338/gels-08-00216-g008.jpg

相似文献

[1]
Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering.

Gels. 2022-4-1

[2]
Photocrosslinked methacrylated natural macromolecular hydrogels for tissue engineering: A review.

Int J Biol Macromol. 2023-8-15

[3]
Current state of knowledge on intelligent-response biological and other macromolecular hydrogels in biomedical engineering: A review.

Int J Biol Macromol. 2023-2-1

[4]
Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications.

Pharmaceutics. 2023-10-23

[5]
Bio-functional strontium-containing photocrosslinked alginate hydrogels for promoting the osteogenic behaviors.

Mater Sci Eng C Mater Biol Appl. 2021-7

[6]
Photocrosslinked methacrylated carboxymethyl chitin hydrogels with tunable degradation and mechanical behavior.

Carbohydr Polym. 2016-12-19

[7]
Affinity-based growth factor delivery using biodegradable, photocrosslinked heparin-alginate hydrogels.

J Control Release. 2011-7-2

[8]
Free-Standing Photocrosslinked Protein Polymer Hydrogels for Sustained Drug Release.

Biomacromolecules. 2021-4-12

[9]
Polypeptide-based self-healing hydrogels: Design and biomedical applications.

Acta Biomater. 2020-9-1

[10]
Thermosensitive and photocrosslinkable hydroxypropyl chitin-based hydrogels for biomedical applications.

Carbohydr Polym. 2018-3-15

引用本文的文献

[1]
Toward Bioactive Hydrogels: A Tunable Approach via Nucleic Acid-Collagen Complexation.

Regen Eng Transl Med. 2024-12

[2]
Review of collagen type I-based hydrogels: focus on composition-structure-properties relationships.

NPJ Biomed Innov. 2025

[3]
Eco-Friendly Conductive Hydrogels: Towards Green Wearable Electronics.

Gels. 2025-3-21

[4]
A review: Carrier-based hydrogels containing bioactive molecules and stem cells for ischemic stroke therapy.

Bioact Mater. 2025-3-5

[5]
Measurement of Covalent Bond Formation in Light-Curing Hydrogels Predicts Physical Stability under Flow.

Anal Chem. 2024-12-17

[6]
Hydrogels Based on Proteins Cross-Linked with Carbonyl Derivatives of Polysaccharides, with Biomedical Applications.

Int J Mol Sci. 2024-7-17

[7]
Hydrogel-Based Therapies for Ischemic and Hemorrhagic Stroke: A Comprehensive Review.

Gels. 2024-7-18

[8]
Measurement of covalent bond formation in light-curing hydrogels predicts physical stability under flow.

bioRxiv. 2024-7-2

[9]
Development of Biphasic Injectable Hydrogels for Meniscus Scaffold from Photocrosslinked Glycidyl Methacrylate-Modified Poly(Vinyl Alcohol)/Glycidyl Methacrylate-Modified Silk Fibroin.

Polymers (Basel). 2024-4-14

[10]
Lab on a Particle Technologies.

Anal Chem. 2024-5-21

本文引用的文献

[1]
Bioinspired Photo-Cross-Linked Nanofibers from Uracil-Functionalized Polymers.

ACS Macro Lett. 2012-1-17

[2]
Promotion of Endothelial Cell Adhesion and Antithrombogenicity of Polytetrafluoroethylene by Chemical Grafting of Chondroitin Sulfate.

ACS Appl Bio Mater. 2020-2-17

[3]
Hybrid Gelatin Hydrogels in Nanomedicine Applications.

ACS Appl Bio Mater. 2021-4-19

[4]
Engineering Tough Metallosupramolecular Hydrogel Films with Kirigami Structures for Compliant Soft Electronics.

Small. 2021-10

[5]
Angiogenic Microspheres for the Treatment of a Thin Endometrium.

ACS Biomater Sci Eng. 2021-10-11

[6]
Bisphosphonate-Conjugated Photo-Crosslinking Polyanionic Hyaluronic Acid Microbeads for Controlled BMP2 Delivery and Enhanced Bone Formation Efficacy.

Biomacromolecules. 2021-10-11

[7]
Dual-Dynamic-Bond Cross-Linked Antibacterial Adhesive Hydrogel Sealants with On-Demand Removability for Post-Wound-Closure and Infected Wound Healing.

ACS Nano. 2021-4-27

[8]
Development and characterization of photo-responsive cinnamoly modified alginate.

Carbohydr Polym. 2021-5-15

[9]
Anionic and Zwitterionic Residues Modulate Stiffness of Photo-Cross-Linked Hydrogels and Cellular Behavior of Encapsulated Chondrocytes.

ACS Biomater Sci Eng. 2018-5-14

[10]
Photo-Crosslinked Silk Fibroin for 3D Printing.

Polymers (Basel). 2020-12-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索