He Bingqing, Cai Chen, McCubbin Tim, Muriel Jorge Carrasco, Sonnenschein Nikolaus, Hu Shihu, Yuan Zhiguo, Marcellin Esteban
Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
Australian Centre for Water and Environmental Biotechnology (ACWEB, Formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia.
Metabolites. 2022 Mar 31;12(4):314. doi: 10.3390/metabo12040314.
Methane is an abundant low-carbon fuel that provides a valuable energy resource, but it is also a potent greenhouse gas. Therefore, anaerobic oxidation of methane (AOM) is an essential process with central features in controlling the carbon cycle. 'Methanoperedens nitroreducens' is a recently discovered methanotrophic archaeon capable of performing AOM via a reverse methanogenesis pathway utilizing nitrate as the terminal electron acceptor. Recently, reverse methanogenic pathways and energy metabolism among anaerobic methane-oxidizing archaea (ANME) have gained significant interest. However, the energetics and the mechanism for electron transport in nitrate-dependent AOM performed by is unclear. This paper presents a genome-scale metabolic model of , MN22HE, which contains 813 reactions and 684 metabolites. The model describes its cellular metabolism and can quantitatively predict its growth phenotypes. The essentiality of the cytoplasmic heterodisulfide reductase HdrABC in the reverse methanogenesis pathway is examined by modeling the electron transfer direction and the specific energy-coupling mechanism. Furthermore, based on better understanding electron transport by modeling, a new energy transfer mechanism is suggested. The new mechanism involves reactions capable of driving the endergonic reactions in nitrate-dependent AOM, including the step reactions in reverse canonical methanogenesis and the novel electron-confurcating reaction HdrABC. The genome metabolic model not only provides an in silico tool for understanding the fundamental metabolism of ANME but also helps to better understand the reverse methanogenesis energetics and its thermodynamic feasibility.
甲烷是一种丰富的低碳燃料,它提供了宝贵的能源资源,但也是一种强效的温室气体。因此,甲烷厌氧氧化(AOM)是控制碳循环的核心过程中的一个重要过程。“嗜硝酸盐甲烷还原菌”是最近发现的一种甲烷营养古菌,能够通过以硝酸盐作为终端电子受体的反向产甲烷途径进行AOM。最近,厌氧甲烷氧化古菌(ANME)中的反向产甲烷途径和能量代谢引起了广泛关注。然而,由其进行的依赖硝酸盐的AOM中的能量学和电子传输机制尚不清楚。本文提出了一种“嗜硝酸盐甲烷还原菌”的基因组规模代谢模型MN22HE,该模型包含813个反应和684种代谢物。该模型描述了其细胞代谢,并能定量预测其生长表型。通过对电子转移方向和特定能量耦合机制进行建模,研究了细胞质异二硫化物还原酶HdrABC在反向产甲烷途径中的必要性。此外,基于通过建模对电子传输的更好理解,提出了一种新的能量转移机制。新机制涉及能够驱动依赖硝酸盐的AOM中的吸能反应的反应,包括反向标准产甲烷中的步骤反应和新的电子分叉反应HdrABC。基因组代谢模型不仅为理解ANME的基本代谢提供了一个计算机工具,而且有助于更好地理解反向产甲烷的能量学及其热力学可行性。