Li Haizhou, Yang Qunhui, Zhou Huaiyang
State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.
Front Microbiol. 2020 Jul 8;11:1409. doi: 10.3389/fmicb.2020.01409. eCollection 2020.
Methane seeps are widespread seafloor ecosystems shaped by complex physicochemical-biological interactions over geological timescales, and seep microbiomes play a vital role in global biogeochemical cycling of key elements on Earth. However, the mechanisms underlying the coexistence of methane-cycling microbial communities remain largely elusive. Here, high-resolution sediment incubation experiments revealed a cryptic methane cycle in the South China Sea (SCS) methane seep ecosystem, showing the coexistence of sulfate (SO )- or iron (Fe)-dependent anaerobic oxidation of methane (AOM) and methylotrophic methanogenesis. This previously unrecognized methane cycling is not discernible from geochemical profiles due to high net methane consumption. High-throughput sequencing and Catalyzed Reporter Deposition-Fluorescence in situ Hybridization (CARD-FISH) results suggested that anaerobic methane-oxidizing archaea (ANME)-2 and -3 coupled to sulfate-reducing bacteria (SRB) carried out SO -AOM, and alternative ANME-2 and -3 solely or coupled to iron-reducing bacteria (IRB) might participate in Fe-AOM in sulfate-depleted environments. This finding suggested that ANME could alter AOM metabolic pathways according to geochemical changes. Furthermore, the majority of methylotrophic methanogens belonged to , and hydrogenotrophic and acetoclastic methanogens were likely inhibited by sulfate or iron respiration. Fe-AOM and methylotrophic methanogenesis are overlooked potential sources and sinks of methane in methane seep ecosystems, thus influencing methane budgets and even the global carbon budget in the ocean.
甲烷渗漏是广泛分布的海底生态系统,在地质时间尺度上由复杂的物理化学 - 生物相互作用塑造而成,渗漏微生物群落对地球上关键元素的全球生物地球化学循环起着至关重要的作用。然而,甲烷循环微生物群落共存的潜在机制在很大程度上仍然难以捉摸。在此,高分辨率沉积物培养实验揭示了南海(SCS)甲烷渗漏生态系统中一个隐秘的甲烷循环,显示出依赖硫酸盐(SO)或铁(Fe)的甲烷厌氧氧化(AOM)与甲基营养型甲烷生成共存。由于甲烷净消耗量高,这种先前未被认识的甲烷循环在地化剖面中难以辨别。高通量测序和催化报告沉积 - 荧光原位杂交(CARD - FISH)结果表明,与硫酸盐还原菌(SRB)耦合的厌氧甲烷氧化古菌(ANME)-2和 -3进行SO - AOM,而在硫酸盐耗尽的环境中,单独的或与铁还原菌(IRB)耦合的另一种ANME -2和 -3可能参与Fe - AOM。这一发现表明ANME可根据地球化学变化改变AOM代谢途径。此外,大多数甲基营养型产甲烷菌属于,而氢营养型和乙酸裂解型产甲烷菌可能受到硫酸盐或铁呼吸作用的抑制。Fe - AOM和甲基营养型甲烷生成是甲烷渗漏生态系统中被忽视的潜在甲烷源和汇,从而影响甲烷收支乃至海洋中的全球碳收支。