Brosio Giorgia, Rossi Giulia, Bochicchio Davide
Department of Physics, University of Genoa Via Dodecaneso 33 16146 Genoa Italy
Nanoscale Adv. 2023 Aug 16;5(18):4675-4680. doi: 10.1039/d3na00430a. eCollection 2023 Sep 12.
Membrane fusion is a strategy to load model or cell-derived vesicles with proteins, drugs, and genetic materials for theranostic applications. It is thus crucial to develop strategies to control the fusion process, also through synthetic fusogenic agents. Ligand-protected, membrane-penetrating gold nanoparticles (Au NPs) can facilitate membrane fusion, but the molecular mechanisms remain unresolved. Here, we tackle NP-induced stalk formation using a coarse-grained molecular dynamics approach and enhanced sampling techniques. We show that smaller (2 nm in diameter) NPs lead to a lower free energy barrier and higher stalk stability than larger NPs (4 nm). We demonstrate that this difference is due to a different ligand conformational freedom, which in turn depends on the Au core curvature. Our study provides precious insights into the mechanisms underlying NP-mediated membrane fusion, while our computational approach is general and applicable to studying stalk formation caused by other fusogenic agents.
膜融合是一种将蛋白质、药物和遗传物质加载到模型或细胞衍生囊泡中用于治疗诊断应用的策略。因此,开发控制融合过程的策略至关重要,通过合成融合剂也可以实现这一点。配体保护的穿膜金纳米颗粒(Au NPs)可以促进膜融合,但其分子机制仍未明确。在这里,我们使用粗粒度分子动力学方法和增强采样技术来研究纳米颗粒诱导的柄形成。我们表明,较小的(直径2 nm)纳米颗粒比较大的纳米颗粒(4 nm)导致更低的自由能垒和更高的柄稳定性。我们证明这种差异是由于不同的配体构象自由度,而这又取决于金核曲率。我们的研究为纳米颗粒介导的膜融合潜在机制提供了宝贵的见解,而我们的计算方法具有通用性,适用于研究其他融合剂引起的柄形成。