Lavagna Enrico, Salassi Sebastian, Bochicchio Davide, Rossi Giulia
Physics Department, University of Genoa, Via Dodecaneso 33, 16146 Genoa, Italy.
Nanoscale. 2023 Sep 29;15(37):15153-15160. doi: 10.1039/d3nr02384b.
Functionalizing the surface of metal nanoparticles can assure their stability in solution or mediate their self-assembly into aggregates with controlled shapes. Here we present a computational study of the colloidal aggregation of gold nanoparticles (Au NPs) isotropically functionalized by a mixture of charged and hydrophobic ligands. We show that, by varying the relative proportion of the two ligands, the NPs form anisotropic aggregates with markedly different topologies: dumbbells, chains, or ribbons. In all cases, two kinds of connections keep the aggregates together: hydrophobic bonds and ion bridges. We show that the anisotropy of the aggregates derives from the NP shell reshaping due to the formation of the hydrophobic links, while ion bridges are accountable for the "secondary structure" of the aggregates. Our findings provide a general physical principle that can also be exploited in different self-assembled systems: anisotropic/directional aggregation can be achieved starting from isotropic objects with a soft, deformable surface.
使金属纳米颗粒的表面功能化能够确保其在溶液中的稳定性,或介导其自组装成具有可控形状的聚集体。在此,我们对由带电和疏水配体混合物各向同性功能化的金纳米颗粒(Au NPs)的胶体聚集进行了计算研究。我们表明,通过改变两种配体的相对比例,纳米颗粒会形成具有明显不同拓扑结构的各向异性聚集体:哑铃状、链状或带状。在所有情况下,有两种连接方式将聚集体维系在一起:疏水键和离子桥。我们表明,聚集体的各向异性源于由于疏水连接的形成导致的纳米颗粒壳层重塑,而离子桥则决定了聚集体的“二级结构”。我们的发现提供了一个通用的物理原理,该原理也可应用于不同的自组装系统:从具有柔软、可变形表面的各向同性物体出发,可以实现各向异性/定向聚集。