Suppr超能文献

利用机器学习预测封锁引发的精神症状的严重程度。

Predicting the Severity of Lockdown-Induced Psychiatric Symptoms with Machine Learning.

作者信息

D'Urso Giordano, Magliacano Alfonso, Rotbei Sayna, Iasevoli Felice, de Bartolomeis Andrea, Botta Alessio

机构信息

Section of Psychiatry, Department of Neuroscience, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Napoli, Italy.

IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy.

出版信息

Diagnostics (Basel). 2022 Apr 12;12(4):957. doi: 10.3390/diagnostics12040957.

Abstract

During the COVID-19 pandemic, an increase in the incidence of psychiatric disorders in the general population and an increase in the severity of symptoms in psychiatric patients have been reported. Anxiety and depression symptoms are the most commonly observed during large-scale dramatic events such as pandemics and wars, especially when these implicate an extended lockdown. The early detection of higher risk clinical and non-clinical individuals would help prevent the new onset and/or deterioration of these symptoms. This in turn would lead to the implementation of public policies aimed at protecting vulnerable populations during these dramatic contingencies, therefore optimising the effectiveness of interventions and saving the resources of national healthcare systems. We used a supervised machine learning method to identify the predictors of the severity of psychiatric symptoms during the Italian lockdown due to the COVID-19 pandemic. Via a case study, we applied this methodology to a small sample of healthy individuals, obsessive-compulsive disorder patients, and adjustment disorder patients. Our preliminary results show that our models were able to predict depression, anxiety, and obsessive-compulsive symptoms during the lockdown with up to 92% accuracy based on demographic and clinical characteristics collected before the pandemic. The presented methodology may be used to predict the psychiatric prognosis of individuals under a large-scale lockdown and thus supporting the related clinical decisions.

摘要

在新冠疫情期间,有报告称普通人群中精神疾病的发病率有所上升,且精神科患者的症状严重程度也有所增加。焦虑和抑郁症状是在大流行和战争等大规模重大事件期间最常观察到的,尤其是当这些事件涉及长时间封锁时。早期发现高风险的临床和非临床个体将有助于预防这些症状的新发和/或恶化。这反过来将促使实施旨在在这些重大突发事件期间保护弱势群体的公共政策,从而优化干预措施的有效性并节省国家医疗系统的资源。我们使用一种监督式机器学习方法来识别因新冠疫情意大利实施封锁期间精神症状严重程度的预测因素。通过一个案例研究,我们将这种方法应用于一小群健康个体、强迫症患者和适应障碍患者。我们的初步结果表明,基于疫情前收集的人口统计学和临床特征,我们的模型能够以高达92%的准确率预测封锁期间的抑郁、焦虑和强迫症状。所提出的方法可用于预测大规模封锁下个体的精神预后,从而支持相关的临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0215/9025309/1164572db7ed/diagnostics-12-00957-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验