Hunt Bram, Kwan Eugene, Tasdizen Tolga, Bergquist Jake, Lange Matthias, Orkild Benjamin, MacLeod Robert S, Dosdall Derek J, Ranjan Ravi
Department of Biomedical Engineering, University of Utah, SLC, UT, USA.
Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA.
Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/cinc.2023.412. Epub 2023 Dec 26.
"Drivers" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.
“驱动因素”被认为是持续性房颤的机制。机器学习算法已被用于识别驱动因素,但当前驱动因素数据集规模较小限制了其性能。我们假设,在大量未标记的心电图数据集上进行无监督学习预训练,将提高在较小驱动因素数据集上的分类器准确性。在本研究中,我们使用基于SimCLR的框架在包含113K个未标记的64电极测量值的数据集上对残差神经网络进行预训练,发现加权测试准确率高于未预训练的网络(78.6±3.9%对71.9±3.3%)。这为开发更优的驱动因素检测算法奠定了基础,并支持将迁移学习用于其他心内膜电图数据集。