Suppr超能文献

用于改善心房颤动患者驾驶分类的迁移学习

Transfer Learning for Improved Classification of Drivers in Atrial Fibrillation.

作者信息

Hunt Bram, Kwan Eugene, Tasdizen Tolga, Bergquist Jake, Lange Matthias, Orkild Benjamin, MacLeod Robert S, Dosdall Derek J, Ranjan Ravi

机构信息

Department of Biomedical Engineering, University of Utah, SLC, UT, USA.

Nora Eccles Cardiovascular Research and Training Institute, University of Utah, SLC, UT, USA.

出版信息

Comput Cardiol (2010). 2023 Oct;50. doi: 10.22489/cinc.2023.412. Epub 2023 Dec 26.

Abstract

"Drivers" are theorized mechanisms for persistent atrial fibrillation. Machine learning algorithms have been used to identify drivers, but the small size of current driver datasets limits their performance. We hypothesized that pretraining with unsupervised learning on a large dataset of unlabeled electrograms would improve classifier accuracy on a smaller driver dataset. In this study, we used a SimCLR-based framework to pretrain a residual neural network on a dataset of 113K unlabeled 64-electrode measurements and found weighted testing accuracy to improve over a non-pretrained network (78.6±3.9% vs 71.9±3.3%). This lays ground for development of superior driver detection algorithms and supports use of transfer learning for other datasets of endocardial electrograms.

摘要

“驱动因素”被认为是持续性房颤的机制。机器学习算法已被用于识别驱动因素,但当前驱动因素数据集规模较小限制了其性能。我们假设,在大量未标记的心电图数据集上进行无监督学习预训练,将提高在较小驱动因素数据集上的分类器准确性。在本研究中,我们使用基于SimCLR的框架在包含113K个未标记的64电极测量值的数据集上对残差神经网络进行预训练,发现加权测试准确率高于未预训练的网络(78.6±3.9%对71.9±3.3%)。这为开发更优的驱动因素检测算法奠定了基础,并支持将迁移学习用于其他心内膜电图数据集。

相似文献

5
Diagnosis of atrial fibrillation based on unsupervised domain adaptation.基于无监督域适应的心房颤动诊断
Comput Biol Med. 2023 Sep;164:107275. doi: 10.1016/j.compbiomed.2023.107275. Epub 2023 Aug 9.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验