Suppr超能文献

数学模型表明植物侵染病毒之间存在合作关系。

Mathematical Modeling Suggests Cooperation of Plant-Infecting Viruses.

机构信息

Department of Mathematics, University of Tennessee, Knoxville, TN 37996, USA.

The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.

出版信息

Viruses. 2022 Mar 31;14(4):741. doi: 10.3390/v14040741.

Abstract

Viruses are major pathogens of agricultural crops. Viral infections often start after the virus enters the outer layer of a tissue, and many successful viruses, after local replication in the infected tissue, are able to spread systemically. Quantitative details of virus dynamics in plants, however, are poorly understood, in part, because of the lack of experimental methods which allow the accurate measurement of the degree of infection in individual plant tissues. Recently, a group of researchers followed the kinetics of infection of individual cells in leaves of plants using Tobacco etch virus (TEV) expressing either Venus or blue fluorescent protein (BFP). Assuming that viral spread occurs from lower to upper leaves, the authors fitted a simple mathematical model to the frequency of cellular infection by the two viral variants found using flow cytometry. While the original model could accurately describe the kinetics of viral spread locally and systemically, we found that many alternative versions of the model, for example, if viral spread starts at upper leaves and progresses to lower leaves or when virus dissemination is stopped due to an immune response, fit the data with reasonable quality, and yet with different parameter estimates. These results strongly suggest that experimental measurements of the virus infection in individual leaves may not be sufficient to identify the pathways of viral dissemination between different leaves and reasons for viral control. We propose experiments that may allow discrimination between the alternatives. By analyzing the kinetics of coinfection of individual cells by Venus and BFP strains of TEV we found a strong deviation from the random infection model, suggesting cooperation between the two strains when infecting plant cells. Importantly, we showed that many mathematical models on the kinetics of coinfection of cells with two strains could not adequately describe the data, and the best fit model needed to assume (i) different susceptibility of uninfected cells to infection by two viruses locally in the leaf vs. systemically from other leaves, and (ii) decrease in the infection rate depending on the fraction of uninfected cells which could be due to a systemic immune response. Our results thus demonstrate the difficulty in reaching definite conclusions from extensive and yet limited experimental data and provide evidence of potential cooperation between different viral variants infecting individual cells in plants.

摘要

病毒是农业作物的主要病原体。病毒感染通常在病毒进入组织外层后开始,许多成功的病毒在受感染组织中局部复制后,能够系统地传播。然而,植物中病毒动态的定量细节理解得很差,部分原因是缺乏实验方法,这些方法可以准确测量单个植物组织的感染程度。最近,一组研究人员使用表达 Venus 或蓝色荧光蛋白 (BFP) 的烟草蚀纹病毒 (TEV) 跟踪单个植物叶片细胞的感染动力学。假设病毒的传播是从下到上的,作者使用流式细胞术对两种病毒变体在细胞中的感染频率进行拟合,建立了一个简单的数学模型。虽然原始模型可以准确地描述局部和系统传播的病毒动力学,但我们发现,许多替代模型,例如,如果病毒的传播从上部叶片开始,然后向下部叶片传播,或者当病毒的传播由于免疫反应而停止时,都可以用合理的质量拟合数据,但参数估计不同。这些结果强烈表明,对单个叶片中病毒感染的实验测量可能不足以确定不同叶片之间病毒传播的途径和病毒控制的原因。我们提出了一些实验方案,这些方案可能有助于对这些替代方案进行区分。通过分析 Venus 和 BFP 两种 TEV 菌株在单个细胞中的共感染动力学,我们发现了一个明显的偏离随机感染模型的现象,这表明这两种菌株在感染植物细胞时存在合作关系。重要的是,我们表明,许多关于两种菌株共感染细胞动力学的数学模型都不能很好地描述数据,而最佳拟合模型需要假设 (i) 未感染细胞在叶内局部和系统地从其他叶片感染两种病毒的易感性不同,以及 (ii) 感染率随未感染细胞的比例而降低,这可能是由于系统性免疫反应所致。因此,我们的研究结果表明,从广泛但有限的实验数据中得出明确结论的困难,并为感染单个植物细胞的不同病毒变体之间可能存在合作关系提供了证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c006/9029262/04d6553f629e/viruses-14-00741-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验