Suppr超能文献

点突变如何增强 SARS-CoV-2 变体 RBD 的基本特性从而影响其传播力和感染力?

How Do Point Mutations Enhancing the Basic Character of the RBDs of SARS-CoV-2 Variants Affect Their Transmissibility and Infectivity Capacities?

机构信息

UMR 152 PharmaDev, Faculté de Pharmacie, Institut de Recherche et Développement, Université Paul Sabatier, 35 Chemin des Maraîchers, 31062 Toulouse, France.

UMR Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, 94700 Maisons-Alfort, France.

出版信息

Viruses. 2022 Apr 10;14(4):783. doi: 10.3390/v14040783.

Abstract

The spread of SARS-CoV-2 variants in the population depends on their ability to anchor the ACE2 receptor in the host cells. Differences in the electrostatic potentials of the spike protein RBD (electropositive/basic) and ACE2 receptor (electronegative/acidic) play a key role in both the rapprochement and the recognition of the coronavirus by the cell receptors. Accordingly, point mutations that result in an increase in electropositively charged residues, e.g., arginine and lysine, especially in the RBD of spike proteins in the SARS-CoV-2 variants, could contribute to their spreading capacity by favoring their recognition by the electronegatively charged ACE2 receptors. All SARS-CoV-2 variants that have been recognized as being highly transmissible, such as the kappa (κ), delta (δ) and omicron (o) variants, which display an enhanced electropositive character in their RBDs associated with a higher number of lysine- or arginine-generating point mutations. Lysine and arginine residues also participate in the enhanced RBD-ACE2 binding affinity of the omicron variant, by creating additional salt bridges with aspartic and glutamic acid residues from ACE2. However, the effects of lysine- and arginine-generating point mutations on infectivity is more contrasted, since the overall binding affinity of omicron RBD for ACE2 apparently results from some epistasis among the whole set of point mutations.

摘要

新冠病毒变异株在人群中的传播取决于其在宿主细胞中锚定 ACE2 受体的能力。刺突蛋白 RBD(正电/碱性)和 ACE2 受体(负电/酸性)之间的静电势差异在冠状病毒与细胞受体的接近和识别中起着关键作用。因此,导致正电荷残基(如精氨酸和赖氨酸)增加的点突变,特别是在 SARS-CoV-2 变异株的刺突蛋白 RBD 中,可能通过促进其与带负电荷的 ACE2 受体的识别,有助于提高其传播能力。所有被认为具有高度传染性的 SARS-CoV-2 变异株,如 κ、δ 和 omicron 变异株,其 RBD 中显示出增强的正电性特征,与产生更多赖氨酸或精氨酸的点突变数量相关。赖氨酸和精氨酸残基也参与了 omicron 变异株增强的 RBD-ACE2 结合亲和力,通过与 ACE2 中的天冬氨酸和谷氨酸残基形成额外的盐桥。然而,赖氨酸和精氨酸产生的点突变对感染性的影响更为复杂,因为 omicron RBD 与 ACE2 的总体结合亲和力显然是由于整套点突变之间的一些上位性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/092e/9031512/b4477e95decb/viruses-14-00783-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验