Suppr超能文献

基于鱼蛉优化算法和混合深度学习模型的阿尔茨海默病预测

Alzheimer's Disease Prediction Using Fisher Mantis Optimization and Hybrid Deep Learning Models.

作者信息

Abbas Sameer, Yeniad Mustafa, Rahebi Javad

机构信息

Computer Engineering Department, Ankara Yildirim Beyazit University, 06010 Ankara, Türkiye.

Software Engineering Department, Istanbul Topkapi University, 34662 Istanbul, Türkiye.

出版信息

Diagnostics (Basel). 2025 Jun 6;15(12):1449. doi: 10.3390/diagnostics15121449.

Abstract

: Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing memory, cognitive, and behavioral decline. Early and accurate diagnosis is critical for timely treatment and management. This study proposes a novel hybrid deep learning framework, GLCM + VGG16 + FMO + CNN-LSTM, to improve AD diagnosis using MRI data. : MRI images were preprocessed through normalization and noise reduction. Feature extraction combined texture features from the Gray-Level Co-occurrence Matrix (GLCM) and spatial features extracted from a pretrained VGG-16 network. Fisher Mantis Optimization (FMO) was employed for optimal feature selection. The selected features were classified using a CNN-LSTM model, capturing both spatial and temporal patterns. The MLP-LSTM model was included only for benchmarking purposes. The framework was evaluated on The ADNI and MIRIAD datasets. : The proposed method achieved 98.63% accuracy, 98.69% sensitivity, 98.66% precision, and 98.67% F1-score, outperforming CNN + SVM and 3D-CNN + BiLSTM by 2.4-3.5%. Comparative analysis confirmed FMO's superiority over other metaheuristics, such as PSO, ACO, GWO, and BFO. Sensitivity analysis demonstrated robustness to hyperparameter changes. : The results confirm the efficacy and stability of the GLCM + VGG16 + FMO + CNN-LSTM model for accurate and early AD diagnosis, supporting its potential clinical application.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,会导致记忆、认知和行为能力下降。早期准确诊断对于及时治疗和管理至关重要。本研究提出了一种新颖的混合深度学习框架GLCM + VGG16 + FMO + CNN-LSTM,以利用磁共振成像(MRI)数据改善AD诊断。:MRI图像通过归一化和降噪进行预处理。特征提取结合了来自灰度共生矩阵(GLCM)的纹理特征和从预训练的VGG-16网络提取的空间特征。采用果蝇优化算法(FMO)进行最优特征选择。使用CNN-LSTM模型对所选特征进行分类,该模型可捕捉空间和时间模式。MLP-LSTM模型仅用于基准测试目的。该框架在阿尔茨海默病神经成像倡议(ADNI)和多模态成像研究阿尔茨海默病数据集(MIRIAD)上进行了评估。:所提出的方法实现了98.63%的准确率、98.69%的灵敏度、98.66%的精确率和98.67%的F1分数,比CNN + SVM和3D-CNN + BiLSTM的性能高出2.4 - 3.5%。对比分析证实了FMO相对于其他元启发式算法(如粒子群优化算法(PSO)、蚁群优化算法(ACO)、灰狼优化算法(GWO)和细菌觅食优化算法(BFO))的优越性。灵敏度分析表明该方法对超参数变化具有鲁棒性。:结果证实了GLCM + VGG16 + FMO + CNN-LSTM模型在AD准确早期诊断方面的有效性和稳定性,支持其潜在的临床应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b559/12191870/53961441c095/diagnostics-15-01449-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验