Abbas Sameer, Yeniad Mustafa, Rahebi Javad
Computer Engineering Department, Ankara Yildirim Beyazit University, 06010 Ankara, Türkiye.
Software Engineering Department, Istanbul Topkapi University, 34662 Istanbul, Türkiye.
Diagnostics (Basel). 2025 Jun 6;15(12):1449. doi: 10.3390/diagnostics15121449.
: Alzheimer's disease (AD) is a progressive neurodegenerative disorder causing memory, cognitive, and behavioral decline. Early and accurate diagnosis is critical for timely treatment and management. This study proposes a novel hybrid deep learning framework, GLCM + VGG16 + FMO + CNN-LSTM, to improve AD diagnosis using MRI data. : MRI images were preprocessed through normalization and noise reduction. Feature extraction combined texture features from the Gray-Level Co-occurrence Matrix (GLCM) and spatial features extracted from a pretrained VGG-16 network. Fisher Mantis Optimization (FMO) was employed for optimal feature selection. The selected features were classified using a CNN-LSTM model, capturing both spatial and temporal patterns. The MLP-LSTM model was included only for benchmarking purposes. The framework was evaluated on The ADNI and MIRIAD datasets. : The proposed method achieved 98.63% accuracy, 98.69% sensitivity, 98.66% precision, and 98.67% F1-score, outperforming CNN + SVM and 3D-CNN + BiLSTM by 2.4-3.5%. Comparative analysis confirmed FMO's superiority over other metaheuristics, such as PSO, ACO, GWO, and BFO. Sensitivity analysis demonstrated robustness to hyperparameter changes. : The results confirm the efficacy and stability of the GLCM + VGG16 + FMO + CNN-LSTM model for accurate and early AD diagnosis, supporting its potential clinical application.
阿尔茨海默病(AD)是一种进行性神经退行性疾病,会导致记忆、认知和行为能力下降。早期准确诊断对于及时治疗和管理至关重要。本研究提出了一种新颖的混合深度学习框架GLCM + VGG16 + FMO + CNN-LSTM,以利用磁共振成像(MRI)数据改善AD诊断。:MRI图像通过归一化和降噪进行预处理。特征提取结合了来自灰度共生矩阵(GLCM)的纹理特征和从预训练的VGG-16网络提取的空间特征。采用果蝇优化算法(FMO)进行最优特征选择。使用CNN-LSTM模型对所选特征进行分类,该模型可捕捉空间和时间模式。MLP-LSTM模型仅用于基准测试目的。该框架在阿尔茨海默病神经成像倡议(ADNI)和多模态成像研究阿尔茨海默病数据集(MIRIAD)上进行了评估。:所提出的方法实现了98.63%的准确率、98.69%的灵敏度、98.66%的精确率和98.67%的F1分数,比CNN + SVM和3D-CNN + BiLSTM的性能高出2.4 - 3.5%。对比分析证实了FMO相对于其他元启发式算法(如粒子群优化算法(PSO)、蚁群优化算法(ACO)、灰狼优化算法(GWO)和细菌觅食优化算法(BFO))的优越性。灵敏度分析表明该方法对超参数变化具有鲁棒性。:结果证实了GLCM + VGG16 + FMO + CNN-LSTM模型在AD准确早期诊断方面的有效性和稳定性,支持其潜在的临床应用。