Micro and Nano-Systems (MNS), Department of Electrical Engineering (Micro- and Nano Systems), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium.
Semiconductor Physics, Department of Physics and Astronomy (Semiconductor Physics), Katholieke Universiteit Leuven (KU Leuven), 3000 Leuven, Belgium.
Sensors (Basel). 2022 Apr 15;22(8):3062. doi: 10.3390/s22083062.
Close monitoring of vital physiological parameters is often key in following the evolution of certain medical conditions (e.g., diabetes, infections, post-operative status or post-traumatic injury). The allocation of trained medical staff and specialized equipment is, therefore, necessary and often translates into a clinical and economic burden on modern healthcare systems. As a growing field, transient electronics may establish fully bioresorbable medical devices capable of remote real-time monitoring of therapeutically relevant parameters. These devices could alert remote medical personnel in case of any anomaly and fully disintegrate in the body without a trace. Unfortunately, the need for a multitude of biodegradable electronic components (power supplies, wires, circuitry) in addition to the electrochemical biosensing interface has halted the arrival of fully bioresorbable electronically active medical devices. In recent years molybdenum (Mo) and tungsten (W) have drawn increasing attention as promising candidates for the fabrication of both energy-powered active (e.g., transistors and integrated circuits) and passive (e.g., resistors and capacitors) biodegradable electronic components. In this review, we discuss the latest Mo and W-based dissolvable devices for potential biomedical applications and how these soluble metals could pave the way towards next-generation fully transient implantable electronic systems.
密切监测重要生理参数通常是跟踪某些医疗状况(例如糖尿病、感染、术后状态或创伤后损伤)演变的关键。因此,需要分配经过培训的医务人员和专用设备,这往往会给现代医疗保健系统带来临床和经济负担。作为一个不断发展的领域,瞬态电子学可能会建立完全可生物吸收的医疗设备,能够远程实时监测治疗相关参数。如果出现任何异常,这些设备可以向远程医疗人员发出警报,并在体内完全分解,不留痕迹。不幸的是,除了电化学生物传感接口之外,还需要大量可生物降解的电子元件(电源、电线、电路),这阻碍了完全可生物吸收的电子有源医疗设备的问世。近年来,钼(Mo)和钨(W)作为制造能量驱动有源(例如晶体管和集成电路)和无源(例如电阻器和电容器)可生物降解电子元件的有前途的候选材料引起了越来越多的关注。在这篇综述中,我们讨论了最新的基于 Mo 和 W 的可溶解设备在潜在的生物医学应用中的应用,以及这些可溶性金属如何为下一代完全瞬态可植入电子系统铺平道路。