Suppr超能文献

人工智能辅助胸部X光片早期检测活动性肺结核:一项基于人群的研究。

Artificial Intelligence Assisting the Early Detection of Active Pulmonary Tuberculosis From Chest X-Rays: A Population-Based Study.

作者信息

Nijiati Mayidili, Ma Jie, Hu Chuling, Tuersun Abudouresuli, Abulizi Abudoukeyoumujiang, Kelimu Abudoureyimu, Zhang Dongyu, Li Guanbin, Zou Xiaoguang

机构信息

Department of Radiology, The First People's Hospital of Kashi Prefecture, Kashi, China.

School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou, China.

出版信息

Front Mol Biosci. 2022 Apr 8;9:874475. doi: 10.3389/fmolb.2022.874475. eCollection 2022.

Abstract

As a major infectious disease, (TB) still poses a threat to people's health in China. As a triage test for TB, reading chest radiography with traditional approach ends up with high inter-radiologist and intra-radiologist variability, moderate specificity and a waste of time and medical resources. Thus, this study established a deep convolutional neural network (DCNN) based artificial intelligence (AI) algorithm, aiming at diagnosing TB on posteroanterior chest X-ray photographs in an effective and accurate way. Altogether, 5,000 patients with TB and 4,628 patients without TB were included in the study, totaling to 9,628 chest X-ray photographs analyzed. Splitting the radiographs into a training set (80.4%) and a testing set (19.6%), three different DCNN algorithms, including ResNet, VGG, and AlexNet, were trained to classify the chest radiographs as images of pulmonary TB or without TB. Both the diagnostic accuracy and the area under the receiver operating characteristic curve were used to evaluate the performance of the three AI diagnosis models. Reaching an accuracy of 96.73% and marking the precise TB regions on the radiographs, ResNet algorithm-based AI outperformed the rest models and showed excellent diagnostic ability in different clinical subgroups in the stratification analysis. In summary, the ResNet algorithm-based AI diagnosis system provided accurate TB diagnosis, which could have broad prospects in clinical application for TB diagnosis, especially in poor regions with high TB incidence.

摘要

作为一种主要的传染病,结核病在中国仍然对人们的健康构成威胁。作为结核病的一种分诊检测方法,采用传统方法读取胸部X光片会导致放射科医生之间以及同一放射科医生内部的高变异性、中等特异性,并且浪费时间和医疗资源。因此,本研究建立了一种基于深度卷积神经网络(DCNN)的人工智能(AI)算法,旨在以有效且准确的方式在胸部后前位X光片上诊断结核病。该研究共纳入了5000例结核病患者和4628例非结核病患者,总计分析了9628张胸部X光片。将这些X光片分为训练集(80.4%)和测试集(19.6%),对包括ResNet、VGG和AlexNet在内的三种不同的DCNN算法进行训练,以将胸部X光片分类为肺结核图像或非肺结核图像。诊断准确性和受试者工作特征曲线下面积均用于评估这三种人工智能诊断模型的性能。基于ResNet算法的人工智能在分层分析中达到了96.73%的准确率,并在X光片上标记出精确的结核病区域,优于其他模型,在不同临床亚组中显示出优异的诊断能力。总之,基于ResNet算法的人工智能诊断系统提供了准确的结核病诊断,在结核病诊断的临床应用中具有广阔前景,尤其是在结核病发病率高的贫困地区。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/50d5/9023793/b3956a1b0d22/fmolb-09-874475-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验