Prieto-Martínez Fernando D, Fernández-de Gortari Eli, Medina-Franco José L, Espinoza-Fonseca L Michel
Instituto de Química, Universidad Autónoma de México, 04510 Mexico City, Mexico.
Department of Nanosafety, International Iberian Nanotechnology Laboratory, Braga, Portugal.
Artif Intell Life Sci. 2021 Dec;1. doi: 10.1016/j.ailsci.2021.100008. Epub 2021 Sep 12.
The search for novel therapeutic compounds remains an overwhelming task owing to the time-consuming and expensive nature of the drug development process and low success rates. Traditional methodologies that rely on the one drug-one target paradigm have proven insufficient for the treatment of multifactorial diseases, leading to a shift to multitarget approaches. In this emerging paradigm, molecules with off-target and promiscuous interactions may result in preferred therapies. In this study, we developed a general pipeline combining machine learning algorithms and a deep generator network to train a dual inhibitor classifier capable of identifying putative pharmacophoric traits. As a case study, we focused on dual inhibitors targeting DNA methyltransferase 1 (DNMT) and histone deacetylase 2 (HDAC2), two enzymes that play a central role in epigenetic regulation. We used this approach to identify dual inhibitors from a novel large natural product database in the public domain. We used docking and atomistic simulations as complementary approaches to establish the ligand-interaction profiles between the best hits and DNMT1/HDAC2. By using the combined ligand- and structure-based approaches, we discovered two promising novel scaffolds that can be used to simultaneously target both DNMT1 and HDAC2. We conclude that the flexibility and adaptability of the proposed pipeline has predictive capabilities of similar or derivative methods and is readily applicable to the discovery of small molecules targeting many other therapeutically relevant proteins.
由于药物开发过程耗时且昂贵,成功率低,寻找新型治疗化合物仍然是一项艰巨的任务。依赖单一药物-单一靶点模式的传统方法已被证明不足以治疗多因素疾病,这导致了向多靶点方法的转变。在这种新兴模式中,具有脱靶和混杂相互作用的分子可能会产生更优的治疗方法。在本研究中,我们开发了一种通用流程,将机器学习算法和深度生成网络相结合,以训练一种能够识别推定药效团特征的双重抑制剂分类器。作为一个案例研究,我们重点关注靶向DNA甲基转移酶1(DNMT)和组蛋白去乙酰化酶2(HDAC2)的双重抑制剂,这两种酶在表观遗传调控中起着核心作用。我们使用这种方法从公共领域的一个新的大型天然产物数据库中识别双重抑制剂。我们使用对接和原子模拟作为补充方法,来建立最佳命中物与DNMT1/HDAC2之间的配体-相互作用图谱。通过使用基于配体和结构的联合方法,我们发现了两种有前景的新型支架,可用于同时靶向DNMT1和HDAC2。我们得出结论,所提出的流程的灵活性和适应性具有类似或衍生方法的预测能力,并且很容易应用于发现靶向许多其他治疗相关蛋白质的小分子。