Suppr超能文献

一种多靶点配体发现的流程:基于DNMT1/HDAC2抑制的表观多药理学案例研究

An pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition.

作者信息

Prieto-Martínez Fernando D, Fernández-de Gortari Eli, Medina-Franco José L, Espinoza-Fonseca L Michel

机构信息

Instituto de Química, Universidad Autónoma de México, 04510 Mexico City, Mexico.

Department of Nanosafety, International Iberian Nanotechnology Laboratory, Braga, Portugal.

出版信息

Artif Intell Life Sci. 2021 Dec;1. doi: 10.1016/j.ailsci.2021.100008. Epub 2021 Sep 12.

Abstract

The search for novel therapeutic compounds remains an overwhelming task owing to the time-consuming and expensive nature of the drug development process and low success rates. Traditional methodologies that rely on the one drug-one target paradigm have proven insufficient for the treatment of multifactorial diseases, leading to a shift to multitarget approaches. In this emerging paradigm, molecules with off-target and promiscuous interactions may result in preferred therapies. In this study, we developed a general pipeline combining machine learning algorithms and a deep generator network to train a dual inhibitor classifier capable of identifying putative pharmacophoric traits. As a case study, we focused on dual inhibitors targeting DNA methyltransferase 1 (DNMT) and histone deacetylase 2 (HDAC2), two enzymes that play a central role in epigenetic regulation. We used this approach to identify dual inhibitors from a novel large natural product database in the public domain. We used docking and atomistic simulations as complementary approaches to establish the ligand-interaction profiles between the best hits and DNMT1/HDAC2. By using the combined ligand- and structure-based approaches, we discovered two promising novel scaffolds that can be used to simultaneously target both DNMT1 and HDAC2. We conclude that the flexibility and adaptability of the proposed pipeline has predictive capabilities of similar or derivative methods and is readily applicable to the discovery of small molecules targeting many other therapeutically relevant proteins.

摘要

由于药物开发过程耗时且昂贵,成功率低,寻找新型治疗化合物仍然是一项艰巨的任务。依赖单一药物-单一靶点模式的传统方法已被证明不足以治疗多因素疾病,这导致了向多靶点方法的转变。在这种新兴模式中,具有脱靶和混杂相互作用的分子可能会产生更优的治疗方法。在本研究中,我们开发了一种通用流程,将机器学习算法和深度生成网络相结合,以训练一种能够识别推定药效团特征的双重抑制剂分类器。作为一个案例研究,我们重点关注靶向DNA甲基转移酶1(DNMT)和组蛋白去乙酰化酶2(HDAC2)的双重抑制剂,这两种酶在表观遗传调控中起着核心作用。我们使用这种方法从公共领域的一个新的大型天然产物数据库中识别双重抑制剂。我们使用对接和原子模拟作为补充方法,来建立最佳命中物与DNMT1/HDAC2之间的配体-相互作用图谱。通过使用基于配体和结构的联合方法,我们发现了两种有前景的新型支架,可用于同时靶向DNMT1和HDAC2。我们得出结论,所提出的流程的灵活性和适应性具有类似或衍生方法的预测能力,并且很容易应用于发现靶向许多其他治疗相关蛋白质的小分子。

相似文献

1
An pipeline for the discovery of multitarget ligands: A case study for epi-polypharmacology based on DNMT1/HDAC2 inhibition.
Artif Intell Life Sci. 2021 Dec;1. doi: 10.1016/j.ailsci.2021.100008. Epub 2021 Sep 12.
2
Epigenetic polypharmacology: A new frontier for epi-drug discovery.
Med Res Rev. 2020 Jan;40(1):190-244. doi: 10.1002/med.21600. Epub 2019 Jun 20.
5
Expanding the Structural Diversity of DNA Methyltransferase Inhibitors.
Pharmaceuticals (Basel). 2020 Dec 27;14(1):17. doi: 10.3390/ph14010017.
6
In-silico discovery of dual active molecule to restore synaptic wiring against autism spectrum disorder via HDAC2 and H3R inhibition.
PLoS One. 2022 Jul 25;17(7):e0268139. doi: 10.1371/journal.pone.0268139. eCollection 2022.
7
Discovery of novel hit compounds as potential HDAC1 inhibitors: The case of ligand- and structure-based virtual screening.
Comput Biol Med. 2021 Oct;137:104808. doi: 10.1016/j.compbiomed.2021.104808. Epub 2021 Aug 26.
10
A Computational Approach for the Discovery of Novel DNA Methyltransferase Inhibitors.
Curr Issues Mol Biol. 2024 Apr 16;46(4):3394-3407. doi: 10.3390/cimb46040213.

引用本文的文献

本文引用的文献

1
Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review.
Eur J Med Chem. 2021 Nov 15;224:113705. doi: 10.1016/j.ejmech.2021.113705. Epub 2021 Jul 15.
2
"Molecular Anatomy": a new multi-dimensional hierarchical scaffold analysis tool.
J Cheminform. 2021 Jul 23;13:54. doi: 10.1186/s13321-021-00526-y. eCollection 2021.
3
Dissecting Histone Deacetylase 3 in Multiple Disease Conditions: Selective Inhibition as a Promising Therapeutic Strategy.
J Med Chem. 2021 Jul 8;64(13):8827-8869. doi: 10.1021/acs.jmedchem.0c01676. Epub 2021 Jun 23.
4
Navigating the DNA methylation landscape of cancer.
Trends Genet. 2021 Nov;37(11):1012-1027. doi: 10.1016/j.tig.2021.05.002. Epub 2021 Jun 10.
5
Research progress of dual inhibitors targeting crosstalk between histone epigenetic modulators for cancer therapy.
Eur J Med Chem. 2021 Oct 15;222:113588. doi: 10.1016/j.ejmech.2021.113588. Epub 2021 Jun 1.
6
Mitotic inheritance of DNA methylation: more than just copy and paste.
J Genet Genomics. 2021 Jan 20;48(1):1-13. doi: 10.1016/j.jgg.2021.01.006. Epub 2021 Feb 19.
7
Decision Making in Structure-Based Drug Discovery: Visual Inspection of Docking Results.
J Med Chem. 2021 Mar 11;64(5):2489-2500. doi: 10.1021/acs.jmedchem.0c02227. Epub 2021 Feb 22.
9
Generating property-matched decoy molecules using deep learning.
Bioinformatics. 2021 Aug 9;37(15):2134-2141. doi: 10.1093/bioinformatics/btab080.
10
Natural products in drug discovery: advances and opportunities.
Nat Rev Drug Discov. 2021 Mar;20(3):200-216. doi: 10.1038/s41573-020-00114-z. Epub 2021 Jan 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验