Suppr超能文献

海藻糖可提高番茄抗旱性,诱导防御反应,并增强对青枯病的抗性。

Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease.

机构信息

Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America.

Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America.

出版信息

PLoS One. 2022 Apr 27;17(4):e0266254. doi: 10.1371/journal.pone.0266254. eCollection 2022.

Abstract

Ralstonia solanacearum causes bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in the disaccharide trehalose. Water-stressed plants also accumulate trehalose, which increases drought tolerance via abscisic acid (ABA) signaling. Because R. solanacearum-infected plants suffer reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. We found that R. solanacearum-infected plants differentially expressed drought-associated genes, including those involved in ABA and trehalose metabolism, and had more ABA in xylem sap. Consistent with this, treating tomato roots with ABA reduced both stomatal conductance and stem colonization by R. solanacearum. Treating roots with trehalose increased xylem sap ABA and reduced plant water use by lowering stomatal conductance and temporarily improving water use efficiency. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent tomato defense genes; increased xylem sap levels of SA and other antimicrobial compounds; and increased bacterial wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Finally, trehalose-treated plants were substantially more resistant to bacterial wilt disease. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic disease resistance, possibly through a Damage Associated Molecular Pattern (DAMP) response pathway. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggested that R. solanacearum-infected plants increase trehalose to improve water use efficiency and increase wilt disease resistance. The pathogen may degrade trehalose to counter these efforts. Together, these results suggest that treating tomatoes with exogenous trehalose could be a practical strategy for bacterial wilt management.

摘要

青枯雷尔氏菌会引起细菌性萎蔫病,导致严重的作物损失。受青枯雷尔氏菌感染的番茄木质部汁液中富含二糖海藻糖。遭受水分胁迫的植物也会积累海藻糖,通过脱落酸(ABA)信号提高耐旱性。由于受青枯雷尔氏菌感染的植物水流减少,我们假设细菌性萎蔫病在生理上模拟了干旱胁迫,而海藻糖可能会缓解这种胁迫。我们发现,受青枯雷尔氏菌感染的植物差异表达了与干旱相关的基因,包括与 ABA 和海藻糖代谢相关的基因,并且木质部汁液中的 ABA 含量更高。与此一致的是,用 ABA 处理番茄根降低了气孔导度和青枯雷尔氏菌对茎的定殖。用海藻糖处理根系增加了木质部汁液中的 ABA,通过降低气孔导度和暂时提高水分利用效率来减少植物的水分利用。海藻糖处理还上调了水杨酸(SA)依赖型番茄防御基因的表达;增加了木质部汁液中 SA 和其他抗菌化合物的水平;并提高了 SA 不敏感 NahG 番茄植物对细菌性萎蔫病的抗性。此外,海藻糖处理增加了木质部中茉莉酸和相关氧化脂类的浓度。最后,用海藻糖处理的植物对细菌性萎蔫病的抗性大大增强。总的来说,这些数据表明,外源海藻糖降低了水胁迫和细菌性萎蔫病,并引发了系统的抗病性,可能通过损伤相关分子模式(DAMP)反应途径。这些反应揭示了植物对生物和非生物胁迫的反应之间的意外联系,并表明受青枯雷尔氏菌感染的植物增加海藻糖以提高水分利用效率和增加萎蔫病抗性。病原体可能会降解海藻糖来对抗这些努力。总的来说,这些结果表明,用外源海藻糖处理番茄可能是一种管理细菌性萎蔫病的实用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a84b/9045674/48507b963669/pone.0266254.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验