Morales Manuel A, Snel Gert J H, van den Boomen Maaike, Borra Ronald J H, van Deursen Vincent M, Slart Riemer H J A, Izquierdo-Garcia David, Prakken Niek H J, Catana Ciprian
Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.
Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, United States.
Front Cardiovasc Med. 2022 Apr 11;9:831080. doi: 10.3389/fcvm.2022.831080. eCollection 2022.
To evaluate if a fully-automatic deep learning method for myocardial strain analysis based on magnetic resonance imaging (MRI) cine images can detect asymptomatic dysfunction in young adults with cardiac risk factors.
An automated workflow termed DeepStrain was implemented using two U-Net models for segmentation and motion tracking. DeepStrain was trained and tested using short-axis cine-MRI images from healthy subjects and patients with cardiac disease. Subsequently, subjects aged 18-45 years were prospectively recruited and classified among age- and gender-matched groups: risk factor group (RFG) 1 including overweight without hypertension or type 2 diabetes; RFG2 including hypertension without type 2 diabetes, regardless of overweight; RFG3 including type 2 diabetes, regardless of overweight or hypertension. Subjects underwent cardiac short-axis cine-MRI image acquisition. Differences in DeepStrain-based left ventricular global circumferential and radial strain and strain rate among groups were evaluated.
The cohort consisted of 119 participants: 30 controls, 39 in RFG1, 30 in RFG2, and 20 in RFG3. Despite comparable (>0.05) left-ventricular mass, volumes, and ejection fraction, all groups (RFG1, RFG2, RFG3) showed signs of asymptomatic left ventricular diastolic and systolic dysfunction, evidenced by lower circumferential early-diastolic strain rate (<0.05, <0.001, <0.01), and lower septal circumferential end-systolic strain (<0.001, <0.05, <0.001) compared with controls. Multivariate linear regression showed that body surface area correlated negatively with all strain measures (<0.01), and mean arterial pressure correlated negatively with early-diastolic strain rate (<0.01).
DeepStrain fully-automatically provided evidence of asymptomatic left ventricular diastolic and systolic dysfunction in asymptomatic young adults with overweight, hypertension, and type 2 diabetes risk factors.
评估基于磁共振成像(MRI)电影图像的心肌应变分析全自动深度学习方法能否检测出有心脏危险因素的年轻成年人的无症状功能障碍。
使用两个U-Net模型实施了名为DeepStrain的自动化工作流程,用于分割和运动跟踪。使用来自健康受试者和心脏病患者的短轴电影MRI图像对DeepStrain进行训练和测试。随后,前瞻性招募了18至45岁的受试者,并将其分类到年龄和性别匹配的组中:危险因素组(RFG)1包括超重但无高血压或2型糖尿病;RFG2包括无2型糖尿病的高血压患者,无论是否超重;RFG3包括2型糖尿病患者,无论是否超重或患有高血压。受试者接受心脏短轴电影MRI图像采集。评估了基于DeepStrain的左心室整体圆周和径向应变以及应变率在各组之间的差异。
该队列由119名参与者组成:30名对照组,RFG1组39名,RFG2组30名,RFG3组20名。尽管左心室质量、容积和射血分数相当(>0.05),但所有组(RFG1、RFG2、RFG3)均显示出无症状左心室舒张和收缩功能障碍的迹象,与对照组相比,圆周舒张早期应变率较低(<0.05、<0.001、<0.01),室间隔圆周收缩末期应变较低(<0.001、<0.05、<0.001)可证明这一点。多变量线性回归显示,体表面积与所有应变测量值呈负相关(<0.01),平均动脉压与舒张早期应变率呈负相关(<0.01)。
DeepStrain全自动地为有超重、高血压和2型糖尿病危险因素的无症状年轻成年人的无症状左心室舒张和收缩功能障碍提供了证据。