Suppr超能文献

优化具有特定隔室反馈抑制作用的中间神经元回路。

Optimizing interneuron circuits for compartment-specific feedback inhibition.

机构信息

Modelling of Cognitive Processes, Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany.

Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany.

出版信息

PLoS Comput Biol. 2022 Apr 28;18(4):e1009933. doi: 10.1371/journal.pcbi.1009933. eCollection 2022 Apr.

Abstract

Cortical circuits process information by rich recurrent interactions between excitatory neurons and inhibitory interneurons. One of the prime functions of interneurons is to stabilize the circuit by feedback inhibition, but the level of specificity on which inhibitory feedback operates is not fully resolved. We hypothesized that inhibitory circuits could enable separate feedback control loops for different synaptic input streams, by means of specific feedback inhibition to different neuronal compartments. To investigate this hypothesis, we adopted an optimization approach. Leveraging recent advances in training spiking network models, we optimized the connectivity and short-term plasticity of interneuron circuits for compartment-specific feedback inhibition onto pyramidal neurons. Over the course of the optimization, the interneurons diversified into two classes that resembled parvalbumin (PV) and somatostatin (SST) expressing interneurons. Using simulations and mathematical analyses, we show that the resulting circuit can be understood as a neural decoder that inverts the nonlinear biophysical computations performed within the pyramidal cells. Our model provides a proof of concept for studying structure-function relations in cortical circuits by a combination of gradient-based optimization and biologically plausible phenomenological models.

摘要

皮质电路通过兴奋性神经元和抑制性中间神经元之间丰富的递归相互作用来处理信息。中间神经元的主要功能之一是通过反馈抑制来稳定电路,但反馈抑制作用的特异性水平尚未完全解决。我们假设抑制性电路可以通过对不同神经元区室的特定反馈抑制,为不同的突触输入流提供单独的反馈控制回路。为了验证这一假设,我们采用了一种优化方法。利用最近在尖峰网络模型训练方面的进展,我们优化了中间神经元电路的连接和短期可塑性,以实现对锥体神经元的区室特异性反馈抑制。在优化过程中,中间神经元分为两类,类似于表达 Parvalbumin(PV)和 Somatostatin(SST)的中间神经元。通过模拟和数学分析,我们表明,所得电路可以被理解为一种神经解码器,它反转了在锥体细胞内执行的非线性生物物理计算。我们的模型通过基于梯度的优化和基于生物学的现象模型相结合,为研究皮质电路的结构-功能关系提供了一个概念证明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f8e/9049365/ae189fcf9360/pcbi.1009933.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验