Department of Psychology, Northeastern University, Boston, MA.
Department of Human Development and Family Studies, Colorado State University, Fort Collins, CO.
Med Sci Sports Exerc. 2022 Sep 1;54(9):1483-1492. doi: 10.1249/MSS.0000000000002949. Epub 2022 Apr 25.
Individual differences in brain structure and function in older adults are potential proxies of brain reserve or maintenance and may provide mechanistic predictions of adherence to exercise. We hypothesized that multimodal neuroimaging features would predict adherence to a 6-month randomized controlled trial of exercise in 131 older adults (age, 65.79 ± 4.65 yr, 63% female), alone and in combination with psychosocial, cognitive, and health measures.
Regularized elastic net regression within a nested cross-validation framework was applied to predict adherence to the intervention in three separate models (brain structure and function only; psychosocial, health, and demographic data only; and a multimodal model).
Higher cortical thickness in somatosensory and inferior frontal regions and less surface area in primary visual and inferior frontal regions predicted adherence. Higher nodal functional connectivity (degree count) in default, frontoparietal, and attentional networks and less nodal strength in primary visual and temporoparietal networks predicted exercise adherence ( r = 0.24, P = 0.004). Survey and clinical measures of gait and walking self-efficacy, biological sex, and perceived stress also predicted adherence ( r = 0.17, P = 0.056); however, this prediction was not significant when tested against a null test statistic. A combined multimodal model achieved the highest predictive strength ( r = 0.28, P = 0.001).
Our results suggest that there is a substantial utility of using brain-based measures in future research into precision and individualized exercise interventions older adults.
老年人的大脑结构和功能的个体差异是大脑储备或维持的潜在替代指标,可能为坚持锻炼提供机制预测。我们假设多模态神经影像学特征将预测 131 名老年人(年龄 65.79 ± 4.65 岁,63%为女性)对为期 6 个月的锻炼随机对照试验的坚持情况,这些老年人单独或与社会心理、认知和健康措施一起纳入预测。
在嵌套交叉验证框架内应用正则化弹性网络回归,在三个单独的模型(仅大脑结构和功能;仅社会心理、健康和人口统计学数据;以及多模态模型)中预测对干预的坚持。
感觉和额下回较高的皮质厚度以及初级视觉和额下回较低的表面积预测坚持度。默认、额顶和注意力网络的节点功能连通性(度计数)较高,初级视觉和颞顶网络的节点强度较低,预测运动坚持(r = 0.24,P = 0.004)。步态和行走自我效能、生物学性别和感知压力的调查和临床测量也预测了坚持(r = 0.17,P = 0.056);然而,当与零假设检验统计量进行测试时,这种预测并不显著。综合多模态模型实现了最高的预测强度(r = 0.28,P = 0.001)。
我们的研究结果表明,在未来针对老年人的精准个体化运动干预研究中,使用基于大脑的指标具有很大的应用价值。