Suppr超能文献

基于放射组学的机器学习在多中心 PD-L1 抑制免疫治疗胶质母细胞瘤的 II 期研究中的预后预测。

Radiomics-Based Machine Learning for Outcome Prediction in a Multicenter Phase II Study of Programmed Death-Ligand 1 Inhibition Immunotherapy for Glioblastoma.

机构信息

From the Department of Radiology and Biomedical Imaging (E.G.), University of California San Francisco, San Francisco, California.

Department of Radiology (E.F., R.Y.H.), Brigham and Women's Hospital, Boston, Massachusetts.

出版信息

AJNR Am J Neuroradiol. 2022 May;43(5):675-681. doi: 10.3174/ajnr.A7488. Epub 2022 Apr 28.

Abstract

BACKGROUND AND PURPOSE

Imaging assessment of an immunotherapy response in glioblastoma is challenging due to overlap in the appearance of treatment-related changes with tumor progression. Our purpose was to determine whether MR imaging radiomics-based machine learning can predict progression-free survival and overall survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.

MATERIALS AND METHODS

Post hoc analysis was performed of a multicenter trial on the efficacy of durvalumab in glioblastoma ( = 113). Radiomics tumor features on pretreatment and first on-treatment time point MR imaging were extracted. The random survival forest algorithm was applied to clinical and radiomics features from pretreatment and first on-treatment MR imaging from a subset of trial sites ( = 60-74) to train a model to predict long overall survival and progression-free survival and was tested externally on data from the remaining sites ( = 29-43). Model performance was assessed using the concordance index and dynamic area under the curve from different time points.

RESULTS

The mean age was 55.2 (SD, 11.5) years, and 69% of patients were male. Pretreatment MR imaging features had a poor predictive value for overall survival and progression-free survival (concordance index  = 0.472-0.524). First on-treatment MR imaging features had high predictive value for overall survival (concordance index = 0.692-0.750) and progression-free survival (concordance index = 0.680-0.715).

CONCLUSIONS

A radiomics-based machine learning model from first on-treatment MR imaging predicts survival in patients with glioblastoma on programmed death-ligand 1 inhibition immunotherapy.

摘要

背景与目的

由于治疗相关变化与肿瘤进展之间的外观存在重叠,因此对胶质母细胞瘤的免疫治疗反应进行影像学评估具有挑战性。我们的目的是确定基于磁共振成像(MR)影像组学的机器学习是否可以预测接受程序性死亡配体 1 抑制免疫治疗的胶质母细胞瘤患者的无进展生存期和总生存期。

材料与方法

对多中心durvalumab 治疗胶质母细胞瘤疗效试验(n = 113)进行了事后分析。在预处理和首次治疗时间点的 MR 图像上提取影像组学肿瘤特征。随机生存森林算法应用于来自试验部分地点(n = 60-74)的预处理和首次治疗 MR 图像的临床和影像组学特征,以训练预测总生存期和无进展生存期较长的模型,并在其余地点(n = 29-43)的数据上进行外部测试。使用不同时间点的一致性指数和动态曲线下面积评估模型性能。

结果

患者的平均年龄为 55.2(标准差,11.5)岁,69%为男性。预处理 MR 成像特征对总生存期和无进展生存期的预测价值较差(一致性指数为 0.472-0.524)。首次治疗 MR 成像特征对总生存期(一致性指数为 0.692-0.750)和无进展生存期(一致性指数为 0.680-0.715)具有较高的预测价值。

结论

基于首次治疗 MR 成像的影像组学机器学习模型可预测接受程序性死亡配体 1 抑制免疫治疗的胶质母细胞瘤患者的生存情况。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验