Suppr超能文献

比较美国各县的全球和空间综合邻里社会经济地位衡量标准。

Comparing Global and Spatial Composite Measures of Neighborhood Socioeconomic Status Across US Counties.

机构信息

Department of Epidemiology & Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, USA.

Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.

出版信息

J Urban Health. 2022 Jun;99(3):457-468. doi: 10.1007/s11524-022-00632-8. Epub 2022 Apr 28.

Abstract

Area-level neighborhood socioeconomic status (NSES) is often measured without consideration of spatial autocorrelation and variation. In this paper, we compared a non-spatial NSES measure to a spatial NSES measure for counties in the USA using principal component analysis and geographically weighted principal component analysis (GWPCA), respectively. We assessed spatial variation in the loadings using a Monte Carlo randomization test. The results indicated that there was statistically significant variation (p = 0.004) in the loadings of the spatial index. The variability of the census variables explained by the spatial index ranged from 60 to 90%. We found that the first geographically weighted principal component explained the most variability in the census variables in counties in the Northeast and the West, and the least variability in counties in the Midwest. We also tested the two measures by assessing the associations with county-level diabetes prevalence using data from the CDC's US Diabetes Surveillance System. While associations of the two NSES measures with diabetes did not differ for this application, the descriptive results suggest that it might be important to consider a spatial index over a global index when constructing national county measures of NSES. The spatial approach may be useful in identifying what factors drive the socioeconomic status of a county and how they vary across counties. Furthermore, we offer suggestions on how a GWPCA-based NSES index may be replicated for smaller geographic scopes.

摘要

区域层面的邻里社会经济地位(NSES)通常在不考虑空间自相关和变异的情况下进行测量。在本文中,我们分别使用主成分分析和地理加权主成分分析(GWPCA),将非空间 NSES 测量值与美国各县的空间 NSES 测量值进行了比较。我们使用蒙特卡罗随机化检验评估了加载的空间变化。结果表明,空间指数的加载存在统计学上显著的差异(p=0.004)。空间指数解释的普查变量的变异性范围为 60%至 90%。我们发现,第一地理加权主成分在东北地区和西部地区的县中解释了普查变量的最大变异性,而在中西部地区的县中则解释了最小的变异性。我们还通过使用疾病预防控制中心(CDC)的美国糖尿病监测系统的数据来评估与县一级糖尿病患病率的关联,对这两种措施进行了测试。虽然这两种 NSES 测量值与糖尿病的关联在这种应用中没有差异,但描述性结果表明,在构建全国县 NSES 测量值时,考虑空间指数而不是全局指数可能很重要。空间方法可能有助于确定哪些因素驱动一个县的社会经济地位,以及它们在各县之间的变化方式。此外,我们还就如何在较小的地理范围内复制基于 GWPCA 的 NSES 指数提出了建议。

相似文献

6
The development of a standardized neighborhood deprivation index.标准化邻里剥夺指数的制定。
J Urban Health. 2006 Nov;83(6):1041-62. doi: 10.1007/s11524-006-9094-x.
7
Neighborhood Socioeconomic Status and Cognitive Function in Late Life.晚年邻里社会经济地位与认知功能
Am J Epidemiol. 2016 Jun 15;183(12):1088-97. doi: 10.1093/aje/kwv337. Epub 2016 Jun 2.

本文引用的文献

7
Neighborhood Environments and Diabetes Risk and Control.社区环境与糖尿病风险和控制。
Curr Diab Rep. 2018 Jul 11;18(9):62. doi: 10.1007/s11892-018-1032-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验