Suppr超能文献

基于计算的 hiPSC 来源的心脏类器官分析揭示了与 NKX2-5 缺陷相关的心室缺陷。

Computational profiling of hiPSC-derived heart organoids reveals chamber defects associated with NKX2-5 deficiency.

机构信息

Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.

Joint Carnegie Mellon, University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA, USA.

出版信息

Commun Biol. 2022 Apr 29;5(1):399. doi: 10.1038/s42003-022-03346-4.

Abstract

Heart organoids have the potential to generate primary heart-like anatomical structures and hold great promise as in vitro models for cardiac disease. However, their properties have not yet been fully studied, which hinders their wide spread application. Here we report the development of differentiation systems for ventricular and atrial heart organoids, enabling the study of heart diseases with chamber defects. We show that our systems generate chamber-specific organoids comprising of the major cardiac cell types, and we use single cell RNA sequencing together with sample multiplexing to characterize the cells we generate. To that end, we developed a machine learning label transfer approach leveraging cell type, chamber, and laterality annotations available for primary human fetal heart cells. We then used this model to analyze organoid cells from an isogeneic line carrying an Ebstein's anomaly associated genetic variant in NKX2-5, and we successfully recapitulated the disease's atrialized ventricular defects. In summary, we have established a workflow integrating heart organoids and computational analysis to model heart development in normal and disease states.

摘要

心脏类器官有潜力生成类似心脏的初级解剖结构,并且作为心脏疾病的体外模型具有很大的应用前景。然而,它们的特性尚未得到充分研究,这阻碍了它们的广泛应用。在这里,我们报告了心室和心房心脏类器官的分化系统的开发,使具有腔室缺陷的心脏疾病的研究成为可能。我们表明,我们的系统生成了包含主要心脏细胞类型的腔室特异性类器官,并且我们使用单细胞 RNA 测序和样本多重化来对我们生成的细胞进行特征描述。为此,我们开发了一种机器学习标签转移方法,利用了可用于原代人胎心脏细胞的细胞类型、腔室和侧性注释。然后,我们使用该模型分析了携带 NKX2-5 相关遗传变异的 Ebstein 异常相关基因同种系系的类器官细胞,并成功再现了疾病的心房化心室缺陷。总之,我们建立了一个整合心脏类器官和计算分析的工作流程,以模拟正常和疾病状态下的心脏发育。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5726/9054831/ff2857216d3a/42003_2022_3346_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验