Zhu Xiaojing, Zhang Zixin, Xiao Yanqi, Wang Hao, Zhang Jiaxing, Wang Mingwei, Jiang Minghui, Xu Yan
College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
Heliyon. 2024 Jul 30;10(15):e35404. doi: 10.1016/j.heliyon.2024.e35404. eCollection 2024 Aug 15.
Cuproptosis may represent a potential biomarker for predicting prognosis and immunotherapy response, but the available evidence is insufficient.
The multiple single-cell RNA sequencing (scRNA-seq) datasets were analyzed to investigate the specific occurrence of cuproptosis in distinct cell populations. Utilizing 28 scRNA-seq datasets, TCGA pan-cancer cohort, and 10 immunotherapy cohorts, we developed a cuproptosis signature (Cup.Sig). This signature was used to construct prediction models for immunotherapy response and identify potential prognostic biomarkers for pan-cancer using 11 different machine learning algorithms.
Malignant cells demonstrate the higher cuproptosis scores in comparison to other cell types across diverse cancer types. The Cup.Sig exhibits significant associations with cancer hallmarks and immune cell response in multiple cancer types. Leveraging the Cup.Sig, the robust pan-cancer immunotherapy prediction model and prognostic biomarker have been established and validated using diverse datasets from various platforms.
We developed a pan-cancer cuproptosis signature for predicting survival and immunotherapy response.
铜死亡可能是预测预后和免疫治疗反应的潜在生物标志物,但现有证据不足。
分析多个单细胞RNA测序(scRNA-seq)数据集,以研究铜死亡在不同细胞群体中的具体发生情况。利用28个scRNA-seq数据集、TCGA泛癌队列和10个免疫治疗队列,我们开发了一种铜死亡特征(Cup.Sig)。该特征用于构建免疫治疗反应的预测模型,并使用11种不同的机器学习算法识别泛癌的潜在预后生物标志物。
与多种癌症类型中的其他细胞类型相比,恶性细胞表现出更高的铜死亡评分。Cup.Sig在多种癌症类型中与癌症特征和免疫细胞反应显著相关。利用Cup.Sig,已使用来自不同平台的各种数据集建立并验证了强大的泛癌免疫治疗预测模型和预后生物标志物。
我们开发了一种泛癌铜死亡特征,用于预测生存和免疫治疗反应。