Suppr超能文献

一种预测免疫治疗反应和预后的泛癌铜死亡特征

A pan-cancer cuproptosis signature predicting immunotherapy response and prognosis.

作者信息

Zhu Xiaojing, Zhang Zixin, Xiao Yanqi, Wang Hao, Zhang Jiaxing, Wang Mingwei, Jiang Minghui, Xu Yan

机构信息

College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.

出版信息

Heliyon. 2024 Jul 30;10(15):e35404. doi: 10.1016/j.heliyon.2024.e35404. eCollection 2024 Aug 15.

Abstract

BACKGROUND

Cuproptosis may represent a potential biomarker for predicting prognosis and immunotherapy response, but the available evidence is insufficient.

METHODS

The multiple single-cell RNA sequencing (scRNA-seq) datasets were analyzed to investigate the specific occurrence of cuproptosis in distinct cell populations. Utilizing 28 scRNA-seq datasets, TCGA pan-cancer cohort, and 10 immunotherapy cohorts, we developed a cuproptosis signature (Cup.Sig). This signature was used to construct prediction models for immunotherapy response and identify potential prognostic biomarkers for pan-cancer using 11 different machine learning algorithms.

RESULTS

Malignant cells demonstrate the higher cuproptosis scores in comparison to other cell types across diverse cancer types. The Cup.Sig exhibits significant associations with cancer hallmarks and immune cell response in multiple cancer types. Leveraging the Cup.Sig, the robust pan-cancer immunotherapy prediction model and prognostic biomarker have been established and validated using diverse datasets from various platforms.

CONCLUSIONS

We developed a pan-cancer cuproptosis signature for predicting survival and immunotherapy response.

摘要

背景

铜死亡可能是预测预后和免疫治疗反应的潜在生物标志物,但现有证据不足。

方法

分析多个单细胞RNA测序(scRNA-seq)数据集,以研究铜死亡在不同细胞群体中的具体发生情况。利用28个scRNA-seq数据集、TCGA泛癌队列和10个免疫治疗队列,我们开发了一种铜死亡特征(Cup.Sig)。该特征用于构建免疫治疗反应的预测模型,并使用11种不同的机器学习算法识别泛癌的潜在预后生物标志物。

结果

与多种癌症类型中的其他细胞类型相比,恶性细胞表现出更高的铜死亡评分。Cup.Sig在多种癌症类型中与癌症特征和免疫细胞反应显著相关。利用Cup.Sig,已使用来自不同平台的各种数据集建立并验证了强大的泛癌免疫治疗预测模型和预后生物标志物。

结论

我们开发了一种泛癌铜死亡特征,用于预测生存和免疫治疗反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/026e/11336580/9920e51b6bb1/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验