Lappi Otto
Cognitive Science/Traffic Research Unit (TRU)/TRUlab, University of Helsinki, Helsinki, Finland.
Front Hum Neurosci. 2022 Apr 12;16:822887. doi: 10.3389/fnhum.2022.822887. eCollection 2022.
What principles and mechanisms allow humans to encode complex 3D information, and how can it be so fast, so accurately and so flexibly transformed into coordinated action? How do these processes work when developed to the limit of human physiological and cognitive capacity-as they are in high-speed sports, such as alpine skiing or motor racing? High-speed sports present not only physical challenges, but present some of the biggest perceptual-cognitive demands for the brain. The skill of these elite athletes is in many ways an attractive model for studying human performance "in the wild", and its neurocognitive basis. This article presents a framework theory for how these abilities may be realized in high-speed sports. It draws on a careful analysis of the case of the motorsport athlete, as well as theoretical concepts from: (1) cognitive neuroscience of wayfinding, steering, and driving; (2) cognitive psychology of expertise; (3) cognitive modeling and machine learning; (4) human-in-the loop modellling in vehicle system dynamics and human performance engineering; (5) experimental research (in the laboratory and in the field) on human visual guidance. The distinctive contribution is the way these are integrated, and the concept of is used in a novel way to analyze a high-speed sport. The mechanisms invoked are domain-general, and not specific to motorsport or the use of a particular type of vehicle (or any vehicle for that matter); the should therefore apply to any dynamic task that requires similar core skills. It offers a framework for neuroscientists, psychologists, engineers, and computer scientists working in the field of expert sports performance, and may be useful in translating fundamental research into theory-based insight and recommendations for improving real-world elite performance. Specific experimental predictions and applicability of the hypotheses to other sports are discussed.
是什么原理和机制使人类能够编码复杂的三维信息,以及它如何能如此快速、准确且灵活地转化为协调行动?当这些过程发展到人类生理和认知能力的极限时——就像在高山滑雪或赛车等高速运动中那样,它们是如何运作的?高速运动不仅带来身体上的挑战,还对大脑提出了一些最大的感知认知要求。这些精英运动员的技能在很多方面是研究“现实生活中”人类表现及其神经认知基础的一个有吸引力的模型。本文提出了一个关于这些能力在高速运动中如何得以实现的框架理论。它借鉴了对赛车运动员案例的仔细分析,以及来自以下方面的理论概念:(1)寻路、转向和驾驶的认知神经科学;(2)专业技能的认知心理学;(3)认知建模和机器学习;(4)车辆系统动力学和人类绩效工程中的人在回路建模;(5)关于人类视觉引导的实验研究(在实验室和实地)。独特的贡献在于这些方面的整合方式,以及[此处原文缺失关键信息]以一种新颖的方式被用于分析一项高速运动。所援引的机制是领域通用的,并非特定于赛车运动或特定类型车辆的使用(或就此而言的任何车辆);因此,[此处原文缺失关键信息]应适用于任何需要类似核心技能的动态任务。它为在专家运动表现领域工作的神经科学家、心理学家、工程师和计算机科学家提供了一个框架,并且可能有助于将基础研究转化为基于理论的见解和提高现实世界中精英表现的建议。文中讨论了具体的实验预测以及这些假设对其他运动的适用性。