Suppr超能文献

动态扫描路径在手动和高度自动驾驶下的研究。

Dynamic scan paths investigations under manual and highly automated driving.

机构信息

EMC (Laboratoire D'étude Des Mécanismes Cognitifs), University Lyon 2, Bron, France.

Institut Universitaire de France, Paris, France.

出版信息

Sci Rep. 2021 Feb 12;11(1):3776. doi: 10.1038/s41598-021-83336-4.

Abstract

Active visual scanning of the scene is a key task-element in all forms of human locomotion. In the field of driving, steering (lateral control) and speed adjustments (longitudinal control) models are largely based on drivers' visual inputs. Despite knowledge gained on gaze behaviour behind the wheel, our understanding of the sequential aspects of the gaze strategies that actively sample that input remains restricted. Here, we apply scan path analysis to investigate sequences of visual scanning in manual and highly automated simulated driving. Five stereotypical visual sequences were identified under manual driving: forward polling (i.e. far road explorations), guidance, backwards polling (i.e. near road explorations), scenery and speed monitoring scan paths. Previously undocumented backwards polling scan paths were the most frequent. Under highly automated driving backwards polling scan paths relative frequency decreased, guidance scan paths relative frequency increased, and automation supervision specific scan paths appeared. The results shed new light on the gaze patterns engaged while driving. Methodological and empirical questions for future studies are discussed.

摘要

主动视觉场景扫描是所有形式人类运动的关键任务要素。在驾驶领域,转向(横向控制)和速度调整(纵向控制)模型在很大程度上基于驾驶员的视觉输入。尽管已经了解了驾驶员在驾驶时的注视行为,但我们对主动采样这些输入的注视策略的顺序方面的理解仍然有限。在这里,我们应用扫描路径分析来研究手动和高度自动化模拟驾驶中的视觉扫描序列。在手动驾驶下,确定了五个典型的视觉序列:向前轮询(即远距离道路探索)、引导、向后轮询(即近距离道路探索)、风景和速度监测扫描路径。以前未记录的向后轮询扫描路径是最常见的。在高度自动化的驾驶中,向后轮询扫描路径的相对频率降低,引导扫描路径的相对频率增加,并且出现了专门用于监督自动化的扫描路径。这些结果为驾驶时的注视模式提供了新的视角。讨论了未来研究的方法学和经验问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6e40/7881108/302c3ea92687/41598_2021_83336_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验