Suppr超能文献

政府应对措施对疫情长期控制的影响——基于 COVID-19 的动态实证分析。

The impact of the government response on pandemic control in the long run-A dynamic empirical analysis based on COVID-19.

机构信息

School of Business, University of Southern Queensland, Toowoomba, Queensland, Australia.

出版信息

PLoS One. 2022 May 4;17(5):e0267232. doi: 10.1371/journal.pone.0267232. eCollection 2022.

Abstract

PURPOSE

Although the outbreak of the Corona Virus Disease 2019 (COVID-19) occurred on a global scale, governments from different countries adopted different policies and achieved different anti-epidemic effects. The purpose of this study is to investigate whether and how the government response affected the transmission scale of COVID-19 on the dynamic perspective.

METHODOLOGY

This paper uses a dynamic generalized moment method to research the relationship between the government response and COVID-19 case fatality rate by using panel data from eight countries: China, United States, Canada, Australia, Italy, France, Japan, and South Korea.

FINDINGS

We have the following findings: 1. Government responses have a significant impact on the scale of COVID-19 transmission. 2. The rate of increase of government responses on the growth rate of COVID-19 case fatality rate has the characteristics of cyclicity and repeatability, that is, with the increase in the growth rate of government responses, the COVID-19 case fatality rate shows the following cyclical motion law: increasing first, reaching the maximum point, and then declining, and finally reaching the minimum point and then rising; ultimately, its convergence becomes 0. The cyclical fluctuations of COVID-19 in the long term may be caused by the decline in the level of government response, the mutation of the virus, and the violation of restrictive policies by some citizens. 3. The government response has a lag in controlling the spread of COVID-19.

ORIGINALITY/VALUE: Since there is a lack of literature on the impact of government responses on the development of COVID-19 from a long-term and dynamic perspective. This paper fills this gap in empirical research. We provide and expand new empirical evidence based on the current literature. This paper provides the basis for government decision-making and will help to formulate the response to other major public health events that may occur in the future.

摘要

目的

尽管 2019 年冠状病毒病(COVID-19)的爆发是全球性的,但各国政府采取了不同的政策,并取得了不同的抗疫效果。本研究旨在从动态角度探讨政府应对措施是否以及如何影响 COVID-19 的传播规模。

方法

本文使用动态广义矩法,利用来自中国、美国、加拿大、澳大利亚、意大利、法国、日本和韩国等 8 个国家的面板数据,研究政府应对措施与 COVID-19 病死率之间的关系。

发现

  1. 政府应对措施对 COVID-19 的传播规模有显著影响。2. 政府应对措施增长率对 COVID-19 病死率增长率的影响具有周期性和重复性特征,即随着政府应对措施增长率的增加,COVID-19 病死率呈现出以下周期性运动规律:先增加,达到最大值,然后下降,最后达到最低点,然后再次上升;最终,其收敛值为 0。COVID-19 的长期周期性波动可能是由于政府应对措施水平下降、病毒突变以及一些公民违反限制政策所致。3. 政府应对措施对 COVID-19 的传播控制存在滞后。

原创性/价值:由于缺乏从长期和动态角度研究政府应对措施对 COVID-19 发展影响的文献。本文填补了实证研究中的这一空白。我们基于当前文献提供并扩展了新的经验证据。本文为政府决策提供了依据,并有助于制定未来可能发生的其他重大公共卫生事件的应对措施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdca/9067654/fd9b079f59d3/pone.0267232.g001.jpg

相似文献

1
The impact of the government response on pandemic control in the long run-A dynamic empirical analysis based on COVID-19.
PLoS One. 2022 May 4;17(5):e0267232. doi: 10.1371/journal.pone.0267232. eCollection 2022.
2
SARS-CoV-2 Wave Two Surveillance in East Asia and the Pacific: Longitudinal Trend Analysis.
J Med Internet Res. 2021 Feb 1;23(2):e25454. doi: 10.2196/25454.
3
The Effect of Governmental Health Measures on Public Behaviour During the COVID-19 Pandemic Outbreak.
Int J Health Policy Manag. 2022 Oct 19;11(10):2166-2174. doi: 10.34172/ijhpm.2021.131. Epub 2021 Sep 11.
7
Surveillance Metrics of SARS-CoV-2 Transmission in Central Asia: Longitudinal Trend Analysis.
J Med Internet Res. 2021 Feb 3;23(2):e25799. doi: 10.2196/25799.
8
SARS-CoV-2 Surveillance in the Middle East and North Africa: Longitudinal Trend Analysis.
J Med Internet Res. 2021 Jan 15;23(1):e25830. doi: 10.2196/25830.
10
Comparative Study of Government Response Measures and Epidemic Trends for COVID-19 Global Pandemic.
Risk Anal. 2022 Jan;42(1):40-55. doi: 10.1111/risa.13817. Epub 2021 Sep 5.

引用本文的文献

2
Serological survey in a university community after the fourth wave of COVID-19 in Senegal.
PLoS One. 2024 Nov 21;19(11):e0298509. doi: 10.1371/journal.pone.0298509. eCollection 2024.
3
The COVID-19 pandemic reveals the wide-ranging role of biobanks.
Front Public Health. 2023 Sep 1;11:1256601. doi: 10.3389/fpubh.2023.1256601. eCollection 2023.
4
The role of civil society organizations (CSOs) in the COVID-19 response across the Global South: A multinational, qualitative study.
PLOS Glob Public Health. 2023 Sep 14;3(9):e0002341. doi: 10.1371/journal.pgph.0002341. eCollection 2023.

本文引用的文献

2
A Disease Control-Oriented Land Cover Land Use Map for Myanmar.
Data (Basel). 2021 Jun;6(6). doi: 10.3390/data6060063. Epub 2021 Jun 13.
3
Temporal variations in COVID-19: an epidemiological discussion with a practical application.
J Int Med Res. 2021 Aug;49(8):3000605211033208. doi: 10.1177/03000605211033208.
4
The Effect of Health and Economic Costs on Governments' Policy Responses to COVID-19 Crisis under Incomplete Information.
Public Adm Rev. 2021 Nov-Dec;81(6):1131-1146. doi: 10.1111/puar.13394. Epub 2021 Jun 13.
5
Policy responses and government science advice for the COVID 19 pandemic in the Philippines: January to April 2020.
Prog Disaster Sci. 2020 Oct;7:100115. doi: 10.1016/j.pdisas.2020.100115. Epub 2020 Jun 18.
7
Effects of containment and closure policies on controlling the COVID-19 pandemic in East Asia.
Asian J Soc Psychol. 2021 Mar;24(1):42-47. doi: 10.1111/ajsp.12459. Epub 2021 Feb 20.
8
Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England.
Science. 2021 Apr 9;372(6538). doi: 10.1126/science.abg3055. Epub 2021 Mar 3.
9
The Cyclicity of coronavirus cases: "Waves" and the "weekend effect".
Chaos Solitons Fractals. 2021 Mar;144:110718. doi: 10.1016/j.chaos.2021.110718. Epub 2021 Jan 28.
10
Inferring the effectiveness of government interventions against COVID-19.
Science. 2021 Feb 19;371(6531). doi: 10.1126/science.abd9338. Epub 2020 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验