Suppr超能文献

限制在盘状多孔硅颗粒中的等离子体纳米结构的增强热效应。

Enhanced thermal effect of plasmonic nanostructures confined in discoidal porous silicon particles.

作者信息

Zhang Dechen, Wu Hung-Jen, Zhou Xinyu, Qi Ruogu, Xu Li, Guo Yi, Liu Xuewu

机构信息

Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University Changchun 130012 P. R. China

Department of Nanomedicine, Houston Methodist Research Institute 6670 Bertner Avenue Houston TX 77030 USA

出版信息

RSC Adv. 2020 Aug 20;10(51):30840-30847. doi: 10.1039/d0ra03379k. eCollection 2020 Aug 17.

Abstract

The design of plasmonic nanostructures could have many exciting applications since it enhances or provides valuable control over efficient energy conversion. A three-dimensional (3D) space is a realistic hotspot matrix harvesting a wide conversion that has been shown in zero-dimensional nanoparticles, one-dimensional linear structures, or two-dimensional films. A novel 3D plasmonic nanostructure platform consisting of plasmonic metal nanoparticles in discoidal porous silicon particles is used in this study. Plasmonic gold nanoparticles are anchored inside the discoidal porous silicon (DPS) particles by reduction synthesis. The novel plasmonic nanostructures can tailor the plasmon band and overcome the instability of photothermal materials. The "trapping well" for the anchored nanoparticles in 3D space can result in a huge change of plasmonic band of metal nanoparticles to the near-IR region in a novel 3D geometry. A multifunctional scaffold, Au-DPS particle, composed of doxorubicin conjugated to poly-(l-glutamic acid) (pDOX), was developed for combinatorial chemo-photothermal cancer therapy. The therapeutic efficacy was examined in treatment of the A549 cell line under near-IR laser irradiation. The highly efficient photothermal conversion can also be demonstrated in the laser desorption/ionization time-of-flight mass spectrometry detection analysis. The limit of detection was obviously improved in the detection of angiotensin II, P14R, and ACTH fragments 18-39 peptides. Overall, we envision that Au-DPS particles may be used in ultrasensitive theranostics in the future.

摘要

等离子体纳米结构的设计可能有许多令人兴奋的应用,因为它可以增强或提供对高效能量转换的宝贵控制。三维(3D)空间是一个现实的热点矩阵,可实现广泛的转换,这已在零维纳米颗粒、一维线性结构或二维薄膜中得到证明。本研究使用了一种新型的3D等离子体纳米结构平台,该平台由盘状多孔硅颗粒中的等离子体金属纳米颗粒组成。通过还原合成将等离子体金纳米颗粒锚定在盘状多孔硅(DPS)颗粒内部。这种新型的等离子体纳米结构可以调整等离子体带并克服光热材料的不稳定性。在3D空间中,锚定纳米颗粒的“捕获阱”可导致金属纳米颗粒的等离子体带在新型3D几何结构中发生巨大变化,移至近红外区域。开发了一种多功能支架,即由与聚(L-谷氨酸)(pDOX)共轭的阿霉素组成的金-DPS颗粒,用于联合化学-光热癌症治疗。在近红外激光照射下对A549细胞系进行治疗,检测了其治疗效果。在激光解吸/电离飞行时间质谱检测分析中也证明了其高效的光热转换。在检测血管紧张素II、P14R和促肾上腺皮质激素片段18-39肽时,检测限明显提高。总体而言,我们设想未来金-DPS颗粒可用于超灵敏的诊疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验