Suppr超能文献

利用贝叶斯回归方法对棉花纤维品质和产量性状进行基因组预测。

Genomic prediction of cotton fibre quality and yield traits using Bayesian regression methods.

机构信息

CSIRO Agriculture & Food, GPO Box 1600, Canberra, ACT, 2601, Australia.

CSIRO Agriculture & Food, Locked Bag 59, Narrabri, NSW, 2390, Australia.

出版信息

Heredity (Edinb). 2022 Aug;129(2):103-112. doi: 10.1038/s41437-022-00537-x. Epub 2022 May 6.

Abstract

Genomic selection or genomic prediction (GP) has increasingly become an important molecular breeding technology for crop improvement. GP aims to utilise genome-wide marker data to predict genomic breeding value for traits of economic importance. Though GP studies have been widely conducted in various crop species such as wheat and maize, its application in cotton, an essential renewable textile fibre crop, is still significantly underdeveloped. We aim to develop a new GP-based breeding system that can improve the efficiency of our cotton breeding program. This article presents a GP study on cotton fibre quality and yield traits using 1385 breeding lines from the Commonwealth Scientific and Industrial Research Organisation (CSIRO, Australia) cotton breeding program which were genotyped using a high-density SNP chip that generated 12,296 informative SNPs. The aim of this study was twofold: (1) to identify the models and data sources (i.e. genomic and pedigree) that produce the highest prediction accuracies; and (2) to assess the effectiveness of GP as a selection tool in the CSIRO cotton breeding program. The prediction analyses were conducted under various scenarios using different Bayesian predictive models. Results highlighted that the model combining genomic and pedigree information resulted in the best cross validated prediction accuracies: 0.76 for fibre length, 0.65 for fibre strength, and 0.64 for lint yield. Overall, this work represents the largest scale genomic selection studies based on cotton breeding trial data. Prediction accuracies reported in our study indicate the potential of GP as a breeding tool for cotton. The study highlighted the importance of incorporating pedigree and environmental factors in GP models to optimise the prediction performance.

摘要

基因组选择或基因组预测(GP)已逐渐成为作物改良的重要分子育种技术。GP 的目的是利用全基因组标记数据来预测对经济重要性状的基因组育种值。虽然 GP 研究已在小麦和玉米等各种作物中广泛开展,但在棉花这一重要的可再生纺织纤维作物中的应用仍明显落后。我们旨在开发一种新的基于 GP 的育种系统,以提高我们的棉花育种计划的效率。本文使用澳大利亚联邦科学与工业研究组织(CSIRO)棉花育种计划的 1385 个育种系进行了 GP 研究,这些系使用高密度 SNP 芯片进行了基因分型,生成了 12296 个信息性 SNP。本研究的目的有两个:(1)确定产生最高预测准确性的模型和数据源(即基因组和系谱);(2)评估 GP 作为 CSIRO 棉花育种计划选择工具的有效性。在不同的情况下,使用不同的贝叶斯预测模型进行了预测分析。结果突出表明,结合基因组和系谱信息的模型产生了最佳的交叉验证预测准确性:纤维长度为 0.76,纤维强度为 0.65,皮棉产量为 0.64。总的来说,这是基于棉花育种试验数据进行的最大规模的基因组选择研究。我们研究中报告的预测准确性表明了 GP 作为棉花育种工具的潜力。该研究强调了在 GP 模型中纳入系谱和环境因素以优化预测性能的重要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验