Unidad de Genómica Avanzada/LANGEBIO, Centro de Investigación y de Estudios Avanzados, Irapuato, México.
Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA.
Trends Plant Sci. 2022 Aug;27(8):814-827. doi: 10.1016/j.tplants.2022.04.001. Epub 2022 May 4.
Global agriculture and food security face paramount challenges due to climate change and land degradation. Human-induced soil compaction severely affects soil fertility, impairing root system development and crop yield. There is a need to design compaction-resilient crops that can thrive in degraded soils and maintain high yields. To address plausible solutions to this challenging scenario, we discuss current knowledge on plant root penetration ability and delineate potential approaches based on root-targeted genetic engineering (RGE) and genomics-assisted breeding (GAB) for developing crops with enhanced root system penetrability (RSP) into compacted soils. Such approaches could lead to crops with improved resilience to climate change and marginal soils, which can help to boost CO sequestration and storage in deeper soil strata.
由于气候变化和土地退化,全球农业和粮食安全面临着重大挑战。人为土壤压实严重影响土壤肥力,损害根系发育和作物产量。因此需要设计具有抗压能力的作物,使其能够在退化的土壤中茁壮成长并保持高产。为了解决这一具有挑战性的情况,我们讨论了当前关于植物根系穿透力的知识,并根据针对根系的基因工程 (RGE) 和基于基因组学的辅助育种 (GAB) ,提出了开发具有增强的根系穿透力 (RSP) 的作物的潜在方法,以适应压实土壤。这些方法可以使作物对气候变化和边际土壤具有更好的适应能力,从而有助于增加深层土壤中的 CO2 封存和存储。